
  

  

Abstract—In this paper we explore a method of segmentation 
of muscle interstitial adipose tissue (IAT) in MR images of the 
thigh. The objective is to apply the method towards research 
into biomarkers of osteoarthritis (OA).  T1-weighted images of 
the thigh are intensity standardized through bias field 
correction and intensity normalization.  IAT within the thigh 
muscles is then segmented using a threshold combined with 
morphological constraints applied on connected regions in the 
thresholded image.  The morphological constraints can be 
adjusted to allow for highly sensitive or highly specific IAT 
segmentation.  The use of the morphological constraints 
improved the specificity of IAT segmentation over a threshold 
segmentation method from 0.54 to 0.67, while retaining a 
nearly equivalent sensitivity of 0.82 compared to 0.84.  We then 
present a preliminary statistical analysis to demonstrate the 
application of the automated IAT segmentation.  Finally, we 
specify a protocol for further exploration of IAT by leveraging 
the massive imaging dataset of the Osteoarthritis Initiative 
(OAI). 

I. INTRODUCTION 
steoarthritis (OA), the most common form of arthritis, 
is a major public health concern [1].  It is estimated that 

up to 90% of the population over 65 has incidence of OA in 
one or more joints [2]. 
 Muscle strength has been shown to be an important factor 
in incidence and progression of OA [3].  In terms of knee 
OA, the extensors of the knee – the quadriceps muscles – are 
an important component of joint stabilization and reduction 
and dispersion of mechanical stress across the joint and have 
been analyzed extensively [4,5]. 
 Infiltration of lean muscle with adipose tissue (fat) has 
been associated with both an increase in age, an increase in 
body-mass index (BMI), and a decrease in strength [6-8].  
Muscle cross-sectional area (CSA) has been related to 
muscle strength [9], however the presence of interstitial 
adipose tissue (IAT) causes an increase in CSA that is 
theoretically not commensurate with an appropriate increase 
in strength.  Since muscle IAT is related to BMI, and BMI is 
a risk factor for OA [10], the presence and amount of IAT 
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may be a risk factor for OA and a biomarker of disease 
incidence and progression.  Therefore, the proper 
segmentation and quantification of IAT is important not 
only for the proper measurement of adipose-tissue free 
(ATF) muscle for use in calculation of CSA, but for the 
detection and characterization of the disease process of OA, 
and other diseases such as muscular dystrophy [11], that 
may show an increased infiltration of fat into muscle.  The 
current work focuses on the segmentation and 
characterization of IAT in the thigh muscles and its relation 
to knee OA. 

II. DATA 
The data used for this analysis was from 103 subjects in 

the progression cohort of the Osteoarthritis Initiative’s 
(OAI) public use dataset (www.oai.ucsf.edu).  Population 
and OA characteristics of these subjects are summarized in 
Table I.  T1-weighted axial scans of the thigh were acquired 
at 5 mm intervals in the range from 10 cm to 17 cm 
proximal to the medial femoral epiphysis of the right knee.  
A single slice taken at 17 cm proximal to the right medial 
femoral epiphysis was analyzed for this study (Fig. 1). 
 
Table I.  Subject information. 

103
Mean 61.2
Standard deviation 10.2
Male 53
Female 50
Caucasian 85
African American 16
Asian 1
Other non-white 1
0 11
1 19
2 34
3 35
4 4

KL grade

Number of subjects

Age

Sex

Ethnicity

 
 

  
Figure 1.  Intensity standardized images from two subjects.  Note the thin, 
high intensity areas within low intensity muscle, which correspond to IAT 
or connective tissue (vertical arrows).  Also, note the high intensity areas 
between muscles (horizontal arrows). 
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III. METHODOLOGY 

A. IAT segmentation 
 
 The objective of the IAT segmentation procedure is to 
correctly segment areas corresponding to adipose tissue 
within the muscle, while disregarding high intensity areas of 
fat and connective tissue between the muscles (Fig. 1), high 
intensity flow artifacts, and subcutaneous fat (the high 
intensity region between the outer borders of the muscles 
and the skin). The segmentation of IAT was performed 
using thresholding and morphological operations on 
intensity-standardized images. 

 
1) Intensity Standardization 

 
The first step in the analysis was standardization of the 

MR image intensities.  The standardization of MR image 
intensities across subjects with images acquired at different 
times and at different sites was important for the consistent 
application of the developed algorithm.  Intensity 
standardization was achieved through a two step process:  

1. Bias field correction: Correction of the slowly-
varying multiplicative bias field created by 
magnetic field inhomogeneities using the 
nonparametric, nonuniform intensity 
normalization (N3) algorithm [12]. 

2. Normalization: Normalization of the bias-field 
corrected images to a scale of [0,1].  The top 
0.05% of intensities (outliers) were removed from 
the scaling operation and instead scaled directly to 
one. 

Bias field correction followed by intensity normalization 
for intensity standardization has been suggested in previous 
work [13]. 

 
2) Thigh mask generation 

 
A thigh mask was created for removal of the background, 

subcutaneous fat, and the femur.  The standardization of 
intensities allowed for a single set of thresholds to be 
applied across all images and all patients.  The background 
was removed by removing all pixels with intensity less than 
0.15.  The subcutaneous fat was removed by thresholding 
the standardized image intensities to retain pixels with 
intensities above 0.5 and then removing connected regions 
that were larger than 1000 pixels.  The threshold and area 
constraint values were experimentally determined to provide 
consistent removal of the subcutaneous fat regions among 
all subjects.  The femur was removed using an automated 
procedure consisting of morphological detection of the high 
intensity medulla and a level set-based segmentation of the 
surrounding low-intensity cortex [14]. 

 
3) Thresholding 

 

A threshold based on the image’s standardized histogram 
was applied to separate fat from muscle/background.  The 
threshold was applied to the image with the thigh mask 
applied (Fig. 2).  The threshold was experimentally varied 
and compared to the results of manual segmentations to 
define an optimal value for discriminating muscle and fat.  
The details of the manual segmentation validation method (a 
random point-based method) are described in section III.B, – 
Validation. 
 

 
Figure 2.  Two examples (top and bottom rows) of original images (left 
column), automatically generated thigh masks used for threshold and 
morphological segmentation and validation (center column), and images 
after application of mask (right column).  The random low intensity and 
high intensity points used for validation were selected from the masked 
images. 
 

4) Morphological processing 
 

Areas of IAT were segmented by applying morphological 
constraints to labeled connected-region maps of the binary 
image created by the thresholding operation (Fig. 2).  These 
masks were used in a comparative analysis between 
threshold-only segmentation of IAT and segmentation of 
IAT using morphological constraints based on region 
skeletonization. 

IAT generally appears as thin, high intensity regions in 
the images.  To extract these thin regions, a morphological 
skeletonization [15] was performed on each connected 
region, followed by the application of a threshold on the 
minimum ratio of the skeletonized region area to the original 
region area.  The threshold effectively removed thick 
regions that may correspond to subcutaneous fat, 
intermuscular fat, and intermuscular connective tissue, 
leaving only regions of IAT in the muscle.  The value of the 
ratio threshold was varied to characterize its effect on 
sensitivity and specificity measures of the automated 
segmentation.  The method of validation is described in 
section III.B. 

 

B. Validation 
 

The performance of the algorithm was validated through 
comparison to manual point-based tissue selection.  A 
trained user was asked to identify randomly selected points 
in a thigh mask (Fig. 2).  The mask constrained the random 
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points selected to mainly be within the muscle or between 
muscles. 

There were 100 points selected by the algorithm – 50 
high intensity points (standardized intensity > 0.5), which 
most likely corresponded to fat/connective tissue, and 50 
low intensity points (standardized intensity ≤ 0.5), which 
most likely corresponded to lean muscle.  The user classified 
each pixel as (1) muscle, (2) IAT, or (3) intermuscular fat, 
artifact, or don’t know. 

Agreement between the manual reader and the automated 
procedure was quantified using sensitivity and specificity.  
Sensitivity measured the number of IAT pixels classified 
correctly, and specificity measured the number of 
muscle/other tissue pixels classified correctly. 
 

C. Statistical analysis of IAT content in the quadriceps 
muscles and subject sex, age, and BMI 

 
An analysis of IAT content in the quadriceps muscle was 

undertaken using a pooled variance t-test.  Associations 
between IAT area, lean muscle area (total muscle cross-
sectional area (CSA) minus IAT area), and IAT area to lean 
muscle area ratio and the subjects’ sex, age, and BMI were 
explored.  This analysis was performed using manual 
segmentations of the quadriceps muscle performed by 
trained readers, combined with the automated IAT 
segmentation procedure.  The initial segmentation threshold 
was set to 0.45 and the skeletonization ratio threshold was 
set to 0.4, values which produced a balance between the 
sensitivity and specificity of IAT segmentation (Table II). 

IV. RESULTS 
 

Example images with IAT segmented are shown in Fig. 3.  
Mean sensitivities and specificities for the automated IAT 
extraction, when compared to the point-based manual 
segmentation as the ground truth, are shown in Tables II and 
III.  Table II shows results when the initial thresholding has 
a value of 0.45, while Table III shows the result when the 
threshold is set to 0.35.  In one of the best-performing cases, 
with the threshold set to 0.45 and the skeletonization ratio 
set to 0.4, the specificity of IAT segmentation increased 
from 0.54 to 0.67, while the sensitivity only decreased to 
0.82 from 0.84.  Table IV shows the sensitivities and 
specificities of a simple thresholding operation on the 
muscle masks of Fig. 2 for segmentation of IAT. 

 

 
Figure 3.  Images from Fig. 1 with automatically segmented regions of 
intramuscular fat overlaid in green. Note that the regions of intermuscular 
fat and connective tissue shown in Fig. 1 are generally not segmented. 

 Both the IAT and lean muscle measurements are 
significantly dependent on the subject’s age and BMI (Table 
V), as expected from previous work [6-8].  The sex of the 
subject is only significant for lean muscle area. 
 
Table II.  Mean (standard deviation) sensitivities and specificities for 
varying ratios of skeletonized region area to original region area.  Threshold 
= 0.45. 

Ratio Sensitivity Specificity
0.0 0.84 (0.18) 0.54 (0.06)
0.1 0.84 (0.18) 0.54 (0.06)
0.2 0.84 (0.18) 0.54 (0.07)
0.3 0.84 (0.18) 0.56 (0.08)
0.4 0.82 (0.19) 0.67 (0.13)
0.5 0.67 (0.24) 0.82 (0.11)
0.6 0.50 (0.25) 0.90 (0.06)
0.7 0.31 (0.22) 0.95 (0.03)  

 
Table III.  Mean (standard deviation) sensitivities and specificities for 
varying ratios of skeletonized region area to original region area.  Threshold 
= 0.35. 

Ratio Sensitivity Specificity
0.0 0.94 (0.16) 0.48 (0.05)
0.1 0.94 (0.16) 0.48 (0.05)
0.2 0.94 (0.16) 0.48 (0.07)
0.3 0.94 (0.16) 0.50 (0.09)
0.4 0.87 (0.20) 0.64 (0.14)
0.5 0.53 (0.23) 0.87 (0.09)
0.6 0.19 (0.18) 0.95 (0.03)
0.7 0.08 (0.15) 0.97 (0.02)  

 
Table IV.  Mean (standard deviation) sensitivities and specificities for 
different thresholds applied to thigh images with subcutaneous fat and 
femur removed (see Fig. 2). 

Threshold Sensitivity Specificity
0.25 1.00 (0.02) 0.18 (0.06)
0.30 0.97 (0.11) 0.40 (0.06)
0.35 0.94 (0.16) 0.48 (0.05)
0.40 0.88 (0.17) 0.51 (0.06)
0.45 0.84 (0.18) 0.54 (0.06)
0.50 0.79 (0.18) 0.56 (0.06)
0.55 0.46 (0.20) 0.65 (0.06)
0.60 0.24 (0.15) 0.72 (0.06)  

 
Table V.  Results (p-values) of the pooled variance t-test for IAT 
measurements and sex, age, and BMI. Age was grouped into two categories: 
< 62 and ≥ 62.  BMI was group into two categories: < 30 and ≥ 30.  *  
represents significance at p = 0.05 level. 

IAT, Muscle Measurement Sex Age BMI
IAT Area 0.66 0.008* 0.0001*
Lean Muscle Area < 0.0001* 0.006* 0.02*
IAT:Lean Muscle Area 0.09 0.002* 0.008*

Stratified variable

 

V. DISCUSSION 
The algorithm performs best using an initial intensity 

threshold of 0.45.  A skeletonization ratio threshold of 0.4 
causes a significant increase in the specificity of IAT 
segmentation from smaller ratio thresholds with only a 
minimal reduction in sensitivity.  The best sensitivity being 
achieved at a skeletonization ratio of 0 is sensible, as this 
corresponds to the case when effectively no morphological 
constraint is applied to the fat regions extracted using the 
threshold.  Similarly, the best specificity at the most 
stringent skeletonization ratio of 0.7 is a logical result.  The 
IAT segmentation algorithm can be adjusted to provide a 
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highly sensitive or highly specific performance, depending 
on the requirements of the user. 
 This algorithm is currently being employed for the 
analysis of biomarkers of OA – specifically associations 
between IAT and KL grade [16], a clinical measure of OA 
severity.  Initial statistical analyses focused on possible 
confounding variables for the comparisons.  It was found 
that age and BMI will need to be adjusted for when using 
the proposed measurements of IAT, lean muscle, and ratios 
between IAT and lean muscle.  Sex is a significant 
confounder with measurements of lean muscle, but not of 
IAT.  These results were expected based on previous work, 
and offer a preliminary validation of the efficacy of the 
automated IAT segmentation for further statistical analyses. 

VI. FUTURE WORK 
Further work in this area will include refinement of the 

automated segmentation procedure based on augmented 
MRI acquisition protocols and incorporation of features 
such as texture and gradient measures for delineation of 
IAT.  Preliminary work with a Phillips 3T scanner has 
identified the use of the SPAIR fat saturation protocol with 
an inversion recovery time of 100 ms as an optimal 
supplement for the further development of our algorithms 
(Fig. 4).  We intend to optimize our automated IAT 
segmentation method using training data acquired using the 
original OAI thigh acquisition protocol supplemented with 
the new fat saturation sequence. 

 

 
Figure 4.  Experimental acquisition using OAI protocol (left) and SPAIR 
fat saturation acquisition (right).  Note the area of high intensity (white 
arrow) in image acquired using OAI protocol and corresponding high 
intensity region on fat saturation (areas of fat should be dark in this image). 

VII. CONCLUSIONS 
We have developed and validated a method of IAT 

segmentation on 103 subjects from the OAI.  The algorithm 
improves the specificity over a threshold segmentation 
method without sacrificing sensitivity.  The objective is to 
employ the segmentation for the analysis of imaging 
biomarkers of OA.  Initial statistical analysis has 
demonstrated the necessity to adjust for confounding 
variables of sex, age, and BMI in future work.  Further 
investigation will explore the potential association between 
KL grade and IAT.  In addition, the specification of a new 
protocol based on the original OAI protocol has been 
proposed.  This new protocol will aid in the further 

development of the current automated IAT segmentation 
algorithm, and the analysis of IAT as a biomarker for OA. 
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