
  

  

Abstract—In this paper we develop a fully automated 
method for the segmentation of the femur in axial MR images 
and its use in the analysis of imaging biomarkers for 
osteoarthritis (OA).  The proposed method is based on 
anatomical constraints implemented using morphological 
operations to extract the femur medulla and a level set 
evolution to extract the femur cortex.  The average agreement 
of the automated segmentation algorithm with ground truth 
manual segmentations was 0.94 ± 0.03 calculated using the 
Zijdenbos similarity index (ZSI).  A pooled variance t-test 
analysis found significant associations between the KL grade, a 
clinical measure of OA severity, and both the cross-sectional 
area (CSA) of the femur medulla (p = 0.02) and the ratio of the 
femur medulla CSA to the femur cortex CSA (p = 0.04) for 
women.  No significant association between femur 
measurements and KL grade was found for men. 

I. INTRODUCTION 
STEOARTHRITIS (OA) is a generally progressive 

joint disease characterized by substantial pain and 
disability.  It is the most common form of arthritis [1], 
affecting up to 90% of the population over the age of 65 [2].  
The causes of OA are known to be multifactorial (genetic, 
environmental, mechanical, biochemical, etc.), although 
characterization of these factors has been difficult beyond a 
qualitative framework.  The identification of quantitative 
biomarkers for OA is an increasingly important objective, 
especially given the aging U.S. population and increased 
incidence of this burdensome disease.  This paper explores 
the relationship between measures of the femur medulla and 
cortex on MRIs and a clinical measure of OA severity, the 
KL grade [3].  This paper also describes a completely 
automated method to segment and quantify the femur for 
biomarker analysis. 
 Known risk factors for OA include obesity, 
previous knee injury, and selected forms of physical activity 
– all of which can cause changes in mechanical loading 
across the knee joint [1].  Bone quality is known to play an 
intimate role in the pathogenesis of OA [4].  The 
restructuring of bone is a well known phenomenon caused 
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by changes in mechanical stress [5].  Physiological 
compensation to handle the stress caused by joint changes in 
OA may therefore result in increased bone deposition and 
therefore increased bone size.  Additionally, persons with 
radiographic evidence of OA have a higher bone mineral 
density (BMD) than those without OA [6].  Previous work 
has analyzed bone size and mechanics of the femur 
diaphysis [7].  In the current study, characteristics of the 
femur diaphysis that were analyzed were cross-sectional 
areas (CSA) and relative sizes of the medulla and cortex.  
The objective was to explore the relationship between these 
measures and clinical grades of OA severity. 
 Section II describes the image dataset used for the 
analysis; Section III presents the methodology of the 
automated segmentation and describes the statistical analysis 
performed using characteristics of the automatically 
segmented femurs; Section IV presents the segmentation 
results and statistical results; Section V discusses the 
implications of the results; and finally, Section VI offers 
conclusions and directions for future work. 

II. DATA 
The data used for this analysis was from 103 subjects in 

the progression cohort of the Osteoarthritis Initiative’s (OAI) 
public use dataset (www.oai.ucsf.edu).  Population and OA 
characteristics of these subjects are summarized in Table I.  
T1-weighted axial scans of the thigh were acquired at 5 mm 
intervals in the range from 10 cm to 17 cm proximal to the 
medial femoral epiphysis of the right knee.  In the current 
work, only the slice at 17 cm from the right thigh was 
analyzed.  MRI acquisition parameters are listed in Table II. 
 
Table I.  Subject information. 

103
Mean 61.2
Standard deviation 10.2
Male 53
Female 50
Caucasian 85
African American 16
Asian 1
Other non-white 1
0 11
1 19
2 34
3 35
4 4

KL grade

Number of subjects

Age

Sex

Ethnicity
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Table II.  Parameters for acquisition of thigh MRIs. 
Weighting T1 Int
Plane Axial
Number of slices 15
Field of view (mm) 500
Slice thickness (mm) 5
Skip (mm) 0
TE/TI (ms) 13
TR (ms) 600
X-resolution (mm) 0.977
Y-resolution (mm) 0.977  

III. METHODOLOGY 
A training set consisting of 30 subjects (15 males, 15 

females) was randomly selected from the complete set of 
103 subjects.  All algorithm parameters were optimized for 
this training subset of patients.  The remaining 73 subjects 
were used as a testing subset.  Example images are shown in 
Fig. 1. 

 

 
Figure 1.  Images from three different subjects in the image dataset. 
Manual segmentations of the femur are shown in yellow. Top row displays 
full thigh images; bottom row displays enlarged region around femur.  The 
femur medulla is the high intensity region in the center of the 
segmentations; the cortex is the dark region surrounding the medulla. 

 
Images were first corrected for intensity bias fields due to 

magnetic field inhomogeneities.  The N3 algorithm [8] was 
used, with parameters: full-width at half-maximum fwhm = 
0.3, distance between basis functions d = 40 mm, noise term 
for deconvolution filter Z = 0.01. The resulting bias-field 
corrected images were then normalized to a range [0,1], with 
the top 0.05% of intensity outliers not included in the scale 
calculation.  The order of the bias field correction followed 
by intensity normalization follows previous work by 
Madabhushi and Udupa [9]. 

The femur medulla was initially extracted by identifying 
pixels with intensity values above 0.5 in the scaled images 
with background pixels removed.   This threshold was 
experimentally determined to provide good separation of fat 
and muscle.  Morphological constraints were then applied to 
separate the femur medulla from regions corresponding to 
subcutaneous and intramuscular fat.  The constraints used 
were: 

1. The area of the region had to be between 30 and 

500 pixels. 
2. The pixels directly surrounding the area could 

contain no more than three high-intensity pixels (> 
0.5) – this constraint used the anatomical 
characteristic that the femur medulla was always 
surrounded by a low intensity region 
corresponding to the femur cortex. 

3. The solidity of the region (the proportion of pixels 
in the convex hull of the region that are also in the 
region [10]) had to be greater than 0.7.  This 
constraint was required to ensure that there were 
no large areas of background pixels (intensity < 
0.5) in the region. 

4. An ellipse fitted to the region had to have a major 
axis to minor axis ratio less than 2.  This ensured 
that the region was approximately circular. 

The entire femur (including the cortex) was then 
segmented by evolving a level set with the boundary contour 
of the medulla used to define the initial level set function.  It 
was found experimentally that by replacing the segmented 
femur medulla region with Gaussian noise of mean 0.05 and 
standard deviation 0.017 the level set contour would be more 
free to expand to the outer borders of the femur cortex, as 
there would not be a high value gradient edge corresponding 
to the femur medulla / cortex boundary.  The level set 
evolution without reinitialization method described in [11] 
was used.  The initial level set was created using the 
segmented femur medulla. 
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Where Ω  was the domain of the level set function, 0Ω  
was the area contained within the contour of the zero level 
set (i.e., pixels within the femur medulla), and 0Ω∂  was the 
zero level set (i.e., the boundary of the femur medulla).  The 
evolution equation was 
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Where μ , λ , and υ  were constant weighting coefficients 
for the terms in the evolution equation with experimentally 
determined values set to 0.05, 3, and -1.5; Δ  was the 
Laplacian operator; div was the divergence function; and  

( )φδ  was the Dirac delta of the level set function.  The time 
step of the evolution was set to three.  The edge indicator 
function, g, was calculated as 
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Where σG  was a 3 by 3 Gaussian smoothing kernel with 
standard deviation � set to 0.5. 

 The evolution of the level set was terminated when 
the iterations hit a maximum value of 300.  This value was 
experimentally determined to provide enough iterations for a 
complete femur segmentation. 

The relationships of femur measurements to a clinical 
score of OA, known as the KL grade, were analyzed using a 
pooled variance t-test. 

Image processing analyses were performed using Matlab, 
R2008a (Natick, MA).  Statistical analyses were performed 
using JMP 8.0 (Cary, NC). 

IV. RESULTS 
Automated segmentation examples are shown in Fig. 2. 
The performance of the training and test sets were 

validated by comparing the automated segmentations with 
manual segmentations performed by trained readers using 
ImageJ (rsbweb.nih.gov/ij/).  The Zijdenbos similarity index 
was used to quantify the results. 
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Where A was the binary mask of the automated 

segmentation and M was the binary mask of the manual 
segmentation.  A ZSI value greater than 0.7 was considered 
to represent “excellent” agreement [12]. 

The training set ZSIs for automated vs. manual 
segmentations of the entire femur are shown in Table III, 
and the interreader agreement for the manual readers is 
shown in Table IV.  In addition to the entire femur 
segmentations, Reader 1 also segmented the femur medulla 
manually.  The ZSI for the automated segmentation of the 
medulla compared with the manual segmentation had a 
mean of 0.89 and a standard deviation of 0.06. 

Manual segmentations of the entire femur of the testing 
dataset were performed by Reader 1 only.  The mean ZSI 
between the automated segmentations and the manual 
segmentations of the testing dataset was 0.91 with a standard 
deviation of 0.16.  However, in these 73 tests there were two 
complete failures of medulla segmentation and hence total 
femur extraction.  For these two cases, the ZSI was 0.  The 
ZSI mean and standard deviation with these two cases 
removed were 0.94 and 0.02, resp. 

 
Figure 2. Results of the femur segmentation algorithm for three different 
subjects. Note the excellent agreement with the manual segmentations in 
Fig. 1. 
 
Table III.  Training set validation - ZSI means (standard deviations) for 
three trained readers’ manual segmentations compared to automated 
segmentations. 

Reader 1 Reader 2 Reader 3
0.94 (0.03) 0.94 ( 0.03) 0.94 ( 0.04)  

 
Table IV.  Interreader variability for manual segmentations of training 
dataset. 

0.96 (0.01) 0.97 (0.01) 0.97 (0.01)

Reader 1 vs. 
Reader 2

Reader 1 vs. 
Reader 3

Reader 2 vs. 
Reader 3

 
 

 One hundred and one subjects were used for the 
statistical analysis (the two subjects for whom the automated 
extraction failed were not included).  The femur 
measurement data were examined for normality and equal 
variance and were found to satisfy each assumption.  The 
relationship between each femur measurement and three 
potential confounders – sex, age, and BMI - was then 
analyzed.  The only factor that was consistently related to 
each measurement was sex (Table V).  Thus, the main 
analyses were stratified across the levels of this variable.  
Fig. 3 displays femur area vs. sex, with the center lines of 
the green diamonds corresponding to the sample means and 
the tips of the diamonds representing the 95% confidence 
intervals (CI). 
 
Table V.  Results (p-values) of the pooled variance t-test for femur CSA 
measurements and sex, age, and BMI. Age was grouped into two 
categories: < 62 and ≥ 62.  BMI was group into two categories: < 30 and ≥ 
30.  *  represents significance at p = 0.05 level. 

Femur Measurement Sex Age BMI
Entire Femur CSA < 0.0001* 0.19 0.02*
Medulla CSA < 0.0001* 0.04* 0.16
Cortex CSA < 0.0001* 0.86 0.02*
Medulla:Cortex CSA 0.02* 0.02* 0.64

Stratified variable

 
 

 
Figure 3. Plot of femur area samples vs. sex.  Center lines of green 
diamonds correspond to means of samples, tips of diamonds represent 95% 
CI. 
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Pooled variance t-test analyses of femur medulla, femur 

cortex, and entire femur CSA and their associations with KL 
grade were performed, stratified by sex.  The KL grades 
were combined into clinically meaningful groups: KL grades 
of 0-1 were combined into a single group (non-definitive 
radiographic OA) and KL grades of 2-4 were combined into 
a single group (definitive radiographic OA).  TableVI shows 
the p-values from each pooled variance t-test.  Significant 
associations at the p = 0.05 level were found between the KL 
grade and the medulla CSA and medulla:cortex CSA 
measurements for females (Table VII). 
 
Table VI.  Results (p-values) of the pooled variance t-test for femur CSA 
measurements and KL grade, stratified by subject sex.  *  represents 
significance at p = 0.05 level. 
Femur Measurement Male Female
Entire Femur CSA 0.54 0.13
Medulla CSA 0.95 0.02*
Cortex CSA 0.34 0.77
Medulla:Cortex CSA 0.80 0.04*  
 
Table VII.  Mean (standard error) for femur measurements associated with 
KL grade for females. 

Femur Measurement 0-1 2-4
Medulla CSA 102 (16) 145 (10)
Medulla:Cortex CSA 0.25 (0.04) 0.35 (0.02)

KL Grade

 

V. DISCUSSION 
The performance of the automated segmentation 

algorithm was excellent, agreeing very closely with manual 
segmentations.  In addition, the interreader agreement 
between the automated and manual segmentations was 
nearly equivalent to the interreader agreement between two 
manual readers. 

There were two “misses” in the automated extraction of 
the medulla in the entire dataset.  Both of these misses were 
from the test dataset.  One was the result of an extremely 
low-intensity medulla, which was not entirely extracted by 
the initial thresholding operation and thus failed the solidity 
and circularity constraints.  The other failure was due to a 
high-intensity, circular intramuscular fat region that was 
selected as the most likely region to be the femur medulla.  
These two failures may be overcome by using more 
statistical information about the location of the femur with 
respect to the entire thigh, and experiments with this type of 
constraint will be undertaken in the future. 

A pooled-variance t-test analysis found a strong 
association between sex and each femur measurement.  The 
pooled variance t-test analyses of KL grade and the femur 
measurements were therefore stratified by sex.  For females, 
there was a significant association between femur medulla 
CSA (p = 0.02) and medulla:cortex CSA ratio (p = 0.04) 
with KL grade.  There was no association between KL grade 
and any of the femur CSA measurements for males. 

VI. CONCLUSION 
An algorithm for automated segmentation of the femur in 

MRI scans was developed and validated.  The algorithm 
separates the medulla from the cortex, allowing the 
morphological analysis of the different constituents of the 
femur and how these properties may be related to OA.  Our 
analysis found that there were significant associations 
between femur CSA and sex.  There were also strong 
relationships between femur medulla CSA and 
medulla:cortex CSA ratio with KL grade for females. 
Further work will incorporate measures of the entire 
available volume of the femur in the OAI studies.  The 
automated femur segmentation method is currently being 
applied to the task of automated segmentation of the 
quadriceps muscles, which will be used in further research 
into imaging biomarkers of OA. 
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