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Abstract—Reacting systems away from the thermodynamic 

limit cannot be accurately modeled with ordinary differential 
equations. These continuous-deterministic modeling formalisms, 
traditionally developed and used by chemical engineers can be 
distinctly false if the number of molecules of reacting chemical 
species is very small, or if reaction events are very rare. Then 
stochastic-discrete representations are appropriate. Importantly, 
in cases where in a network of reactions there are some parts 
that must be modeled discretely and stochastically, yet others can 
be modeled continuously and deterministically, the need for 
development of multiscale models emerges naturally. In 
computational synthetic biology, such cases arise often. In this 
work we present the development of multiscale models for 
synthetic biology applications, demonstrating accuracy, 
computational efficiency and utility. 
 

Index Terms—synthetic biology, stochastic simulations, kinetic 
Monte Carlo, Chemical Langevin Equations. 
 

I. INTRODUCTION 
he nascent field of synthetic biology offers the promise of 
engineered gene networks with novel biological 

phenotypes. Numerous synthetic gene circuits have been 
created in the past decade, including bistable switches, 
oscillators, and logic gates [1-7]. Designing synthetic gene 
regulatory networks can take advantage of an ever-expanding 
toolbox of molecular components becoming known thanks to 
genome projects and the developed technologies for 
inexpensively manipulating DNA sequences. Biomedical and 
biotechnological applications abound: from protein production 
optimization, bioenergy generation and biosensing, to stem 
cell differentiation and gene therapies.  
Despite a booming field and although recently developed 
designs of regulatable gene networks are ingenious, there are 
limitations in routinely engineering synthetic biological 
systems, i.e. designing a specific DNA sequence that will give 
rise in a targeted dynamic phenotype. Indeed, there is a need 
for rationalizing the design of novel regulatable gene 
networks that can be used in useful applications.  
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We are developing multiscale mathematical tools to 
rationalize synthetic biology [8-18]. Why are new multiscale 
models necessary to assist synthetic biology, and not simply 
apply the mathematics developed by physicists, chemists and 
chemical engineers to model kinetic and thermodynamic 
processes in living organisms? Because, although the 
principles of thermodynamics, kinetics and transport 
phenomena apply to biological systems, these systems differ 
from industrial-scale chemical systems in an important, 
fundamental way: they are occasionally far from the 
thermodynamic limit. This theoretical limit is attained when 
the number of molecules of molecular species in the system 
increases toward infinity. However, the fact that biomolecular 
systems can be very far from the thermodynamic limit, with 
reactants/products numbering only very small numbers of 
molecules in the system, hinders the use of continuous-
deterministic models. Indeed, using ordinary differential 
equations for simulating the reaction kinetics of these systems 
can be distinctly false. The need arises then for stochastic 
models that account for inherent, thermal noise, which is 
manifest as phenotypic distributions at the population 
growth/interaction levels.  
This assessment is not new. The importance of modeling 
formalisms appropriate for systems away from the 
thermodynamic limit was recognized more than 50 years ago 
by McQuarrie, Moyal and Oppenheim [19-23], among others. 
These physical chemists developed the chemical master 
equation that follows the time changes of the probability 
distribution the state is at any point in the available state 
space. In the next section, we will discuss the CME and the 
difficulties to solve it for complex systems.  
In 1976, Daniel Gillespie developed a computer algorithm that 
could sample the master probability distribution with 
numerical simulations of networks of reactions [24, 25]. 
Although Gillespie’s methods were not widely recognized for 
almost 20 years, his algorithms found fertile ground for 
development in efforts to model biological systems. 
Nowadays, a community of scientists and engineers is 
working on improving the computational efficiency and 
accuracy of algorithms that simulate chemical reacting 
systems [26-35]. 

II. THEORY OF MULTISCALE MODELS FOR BIOMOLECULAR 
SYSTEMS 
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The large number of molecular components and interactions 
involved in dynamic biological phenotypes requires 
sophisticated computational modeling. Computer simulations 
enable exhaustive searches of different network connectivities 
and molecular thermodynamic/kinetic parameters, greatly 
advancing the development of design principles.  
Monod’s and Jacob’s assertion can be adopted that biological 
complexity emerges as a result of biomolecular interactions. 
We can then represent all gene expression molecular level 
events with reactions. For any two molecular species A and B 
(proteins, DNA, RNA, signaling molecules, etc.) interacting in 
solution to form a complex A*B (e.g. a repressor protein and 
the corresponding DNA operator site) we write 

[A]aq + [B]aq         [A*B]aq  (1) 

with k1 and k-1 the association and dissociation kinetic 
constants, respectively.  
One could then generate networks of chemical reactions that 
incorporate all individual molecular species and interactions 
known to be involved in gene expression. All the steps in 
transcription, translation, regulation, induction, degradation 
can be expressed mechanistically with chemical reactions. 
Sets of ordinary differential equations (ODEs) could be 
written for the chemical reaction kinetics, sets of initial 
conditions assigned and numerical simulations of 
biomolecular systems conducted.   
Nonetheless, the underlying assumption of ODEs, which are 
continuous-deterministic models, is that the number of 
molecules approaches the thermodynamic limit (i.e. that the 
volume of the system and the number of reacting molecules 
are infinite).  
This assumption can be invalid for biological systems, since 
for some components (DNA sites for example) there are only 
a few copies available. An alternative way to model reactions 
involving very dilute reactants is to treat the system kinetics as 
a Markov chain.  In particular, it will be a Markov chain with 
a discrete set of possible states, or “state space”, occurring in 
continuous time.  Here, states refer to numbers of molecules 
present in the system.  In general this will be a vector: 

Xi(t) =  number of molecules of the ith unique chemical 
where i = 1…N chemical species   (2) 

Transitions between states of the Markov chain occur when 
a chemical reaction occurs.  Reactions in biological systems 
may include covalent reactions, bindings, conformational 
changes, transcriptional elongation events, etc.  If the N 
chemical species engage in M distinct reactions, then the 
reactions are described by a stoichiometric matrix: 

�ij  =  the M x N stoichiometic matrix  (3) 
Macroscopic rate constants are replaced by a vector of 

reaction propensities: 
aj(X)dt  =  the probability that the jth reaction will occur in 

the system in a dt  (4) 
Thus, starting from a particular initial state at t0, at some 

later time there exists a conditional probability distribution 
P(X,t|Xo,to) of possible states at a later time t [19-23]. The 
time-evolution of this probability density is described by the 
“Master Equation,”  

( , | , )
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j jj o o j o o
i j

dP X t X t
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dt �

� �� � � �� �	
  (5) 

If the master equation could be solved, one would know the 
probability of each state as a function of time, and the 
probabilistic behavior of the system would be completely 
characterized.  Unfortunately, this is rarely possible with 
systems of even modest complexity. Rather than attempting to 
calculate the time-dependant probability density function, it is 
often useful to calculate individual stochastic reaction 
trajectories in state space. A numerical stochastic simulation 
algorithm (SSA) to calculate these trajectories was described 
by Gillespie [24-25].  Although accurate in capturing the 
dynamic of biomolecular interaction systems, SSA becomes 
computationally intractable, if the time scales of involved 
interaction events are disparate, because it simulates every 
single biomolecular interaction event, spending inordinate 
amounts on fast reactions for very few simulated occurrences 
of slow reactions. There have been numerous attempts to 
improve the efficiency of the SSA 26-35]. Usually though 
algorithms are not computationally efficient, especially for 
complex biological systems.  

III. HYBRID STOCHASTIC-DISCRETE AND STOCHASTIC-
CONTINUOUS ALGORITHMS 

We devised numerous multiscale hybrid methods to 
simulate complex biomolecular interaction networks [8-
18,36]. For the sake of brevity we will only describe one to set 
the stage for the presented work [8].  

Given the system definition of the previous section, the 
system is dynamically portioned into two subsets, the 
fast/continuous and slow/discrete reactions. Namely M is now 
the sum of  fastM and   slowM respectively. Propensities are 

also designated as fast ( f
  ) and slow ( s
  ). Two conditions 
must be met for the jth reaction to be classified as “fast”: i) 
The reaction occurs many times in a small time interval. ii)The 
effect of each reaction on the numbers of reactants and 
products species is small, when compared to the total numbers 
of reactant and product species. In equation form, 

respectively:   � �� � 1j X t
 
� �� and ( )i jiX t � �� �  ,  

where the i-th species is either a product or a reactant in   Both 
conditions ensure that the fast subsystem can be approximated 
as a continuous Markov process, instead of a jump or discrete 
Markov process. The two parameters � and � define 
respectively the numbers of reactions occurring within time �t 
and what is the upper limit for the effect of a reaction to be 
negligible in the number of molecules of the reactants and 
products. This approximation becomes valid when both � and 
� become infinite i.e. in the thermodynamic limit. In practice, 
we have found that typical values for � and � can be O(102) 
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and O(104) respectively [8].  
The subset of “fast” reactions can be approximated as a 

continuous time Markov process. Under the assumptions of 
the previous section, we can also partition the CME into fast 
and slow subsets. One can make a volume expansion to the 
CME governing the fast/continuous subset of reactions ending 
up with a Chemical Langevin Equation (CLE). The CLE is an 
Itô stochastic differential equation with multiplicative noise 
and represents one possible solution of the Fokker-Plank 
equation. In our case, of a multidimensional Fokker-Plank 
equation we end up with a system of Itô stochastic differential 
equations: 

� � � �
1 1

( ) ( )
fa st fastM M

f f
i ji j ji j j

j j
dX X t d t X t dW� 
 � 


� �

� �	 	
(6) 
where  ,fj ji
 �  are the propensities and the stoichiometric 

coefficients of only the fast reactions, fastM   is the number of 
fast reactions and W is a Wiener process [23], which is a  a 
continuous-time stochastic process producing a Gaussian-
distributed noise perturbation. The system of CLEs is the one 
used to propagate the subsystem of fast/continuous reactions 
over time. Though not trivial to solve numerically, it is much 
easier to deal with it rather than looking into the CME. 

A system of differential jump equations is used to calculate 
the next jump of a slow reaction. The jump equations are 
defined as:     

� � � �
� � � �0

( ) ,       

log ,       1,...,

s
j j

slow
j j

dR t X t dt

R t URN j M


�

� �
 (7) 

where   denote the residual of the jth slow reaction,   
slowM are the propensities of only the slow reactions,   is the 

number of slow reactions and URN is a uniform random 
number in the interval (0,1). Equations (7) depict the rate at 
which the reaction residuals change. Note that the initial 
conditions of all   are negative. Equations (7) are also Itô 
differential equations even though they do not contain a 
Wiener process, because the propensities of the slow reactions 
depend on the state of the system, which in turn depends on 
the system of CLEs. Due to the coupling between the system 
of CLEs (6) and differential jump equations (7) they can be 
integrated simultaneously using SDE numerical schemes. This 
results in very significant computational gains, while retaining 
accuracy, as discussed in [8]. 

IV. COMPUTER-AIDED SYNTHETIC BIOLOGY 
Using the multi-scale models, we have modeled and 

engineered in silico multiple synthetic gene networks: bistable 
switches, oscillators, tetracycline-inducible networks, and 
AND logical gates [36-40]. 
Recently we built the Synthetic Biology Software Suite, a 
software suite that automates the steps for building models of 
and conducting numerical simulations synthetic biological 
systems.  There are three components in SynBioSS: Designer,
Wiki and Simulator.  

With SynBioSS Designer, gene network models are created 
automatically after the user enters molecular components and 
their relationships. Expression then progresses for any gene in 
a systematic way, following the molecular biology dogma: 
RNAp binds the promoter site, forms an open complex, 
proceeds with transcriptional elongation, and synthesizes 
mRNA; then ribosome binds the RBS of mRNA and proceeds 
with translational elongation and polypeptide synthesis; the 
protein is formed, it folds and functions. In the process, 
mRNA and protein molecules are degraded, enriching the 
pools of RNA bases and amino acids. This system of reactions 
can be built for any particular sequence of DNA with defined 
genetic components.  
Every reaction in the model has a corresponding kinetic rate 
that describes the rate of association of its reactant molecules 
and the formation or destruction of any covalent bonds or 
stable non-covalent interactions. SynBioSS Wiki has been 
specifically created to store and recall just this sort of kinetic 
data. SynBioSS Wiki has two components: i) a web interface 
based on the MediaWiki package and ii) a database for storing 
molecular components, their interactions, and pertinent 
biological information.  The SynBioSS Wiki goes beyond the 
MediaWiki software in storing kinetic information in a 
formatted (and therefore machine-searchable) format.  The 
database of kinetic constants is easily searchable for 
participating species, reaction type, etc. Users can search or 
browse the web site and select reactions to interactively build 
a model that can be exported in a SBML format. Each kinetic 
constant entered in the database is correlated with a reference 
field in the database as well as type-specific reference 
information (pdb ID for proteins, CAS ID for small 
molecules, PubMed ID for everything, etc).  
Simulating gene regulatory networks becomes simple with the 
third component of SynBioSS, the Desktop Simulator. 
SynBioSS Desktop Simulator can be downloaded as an 
installation executable for Windows (a beta MacOS version is 
available). The steps are as follows: 

1. Go to synbioss.sourceforge.net  
2. Click on “Simulator” on the upper left corner. This will 

take you to http://synbioss.sourceforge.net/simulator/ 
3. Click on “Download” in the middle of the webpage. This 

will take you to the sourceforge file directory. 
4. Click on SynBioSSDSInstaller-1.0.1.exe. This 

downloads the installation executable on your computer. 
5. Run the executable. This will install the current version 

of SynBioSS on your computer. 
6. Click on the Start Menu to find and click the SynBioSS 

icon. This will launch SynBioSS. 
We have made available with SynBioSS all the files to 

simulate such synthetic biological systems as bistable 
switches, tetracycline-inducble networks and oscillators. 
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