
  

  

Abstract—In the post-genome era, disease-relevant gene 

finding and prioritization have focused on genome-wide 

association studies and molecular interaction networks, due to 

their power in characterizing the functions of genes/proteins in 

genomics and network biology contexts. In this paper, we 

describe a simple yet generic computational framework based 

on protein interaction networks to perform and evaluate 

disease gene-hunting, using colorectal cancer as a case study. 

We applied statistical measurements including specificity, 

sensitivity and Positive Predictive Value (PPV) to evaluate the 

performance of disease gene ranking methods, which we broke 

down into seed gene selection, protein interaction data quality 

and coverage, and network-based gene-ranking strategies. We 

discovered that best results may be obtained by using curated 

gene sets as seeds, applying protein interaction data set with 

high data coverage and decent quality, and adopting variants of 

local degree methods. 

I. INTRODUCTION 

ISEASE gene finding is a central topic in biomedical 

research. If the causal genes are found for a disease, 

health care solutions may be developed to prevent disease 

occurrence, diagnose disease early, and make tailored 

treatment plans, e.g., in [1, 2]. For nearly a century, there 

have been two approaches to discover genes related to a 

specific disease experimentally: biochemical analysis 

approach and genetic analysis approach [3]. The first 

approach attempts to first separate and purify proteins 

characteristic of disease conditions in model organisms or 

tissues, and then study the disease-related proteins’ 

biochemical or biophysical altered properties that can be 

mapped to gene mutations. The second approach normally 

relies on first studying genetic markers identified in families 

of diseased populations, and then applying positional 

cloning techniques and linkage analysis to identify 

microsatellite markers, chromosomal aberrations, or DNA 

polymorphisms. However, experimental characterization of 

proteins or genes involved in diseases is a slow meticulous 

process. Today, even with advances of genomics 
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technology, one third of all the genes and most of the disease 

related genes remain functionally uncharacterized [4]. A 

promising new experimental technique is genome-wide 

association studies (GWAS), which may help identify 

candidate single-nucleotide polymorphism (SNP) genetic 

markers associated with disease risks.  

While most computational approaches to disease gene 

finding rest on statistical association studies or 

computational sequence analysis, there are surging interests 

in taking advantage of molecular interaction networks. The 

concept is to put candidate genes and proteins in specific 

disease biology contexts defined by molecular interaction 

networks or biomolecular pathways, with which a researcher 

can infer functions of uncharacterized genes or proteins. 

Such disease biomolecular network context may be 

particularly useful for the study of polygenic diseases such 

as cancer, in which conventional reductionist approaches are 

ineffective [1]. In this new approach, disease networks are 

developed to rank disease relevance of genes/proteins based 

on properties such as node degrees (count of direct PPI 

connections to a node), closeness (path distance of a given 

node to all other nodes), or betweenness (count of geodesic 

paths that pass through a node). For example, Morrison et al 

used gene expression network and gene ontology 

information to rank genes similar to Google’s PageRank 

method [5]. Chen et al were the first to propose a method 

that applied disease-specific protein-protein interaction (PPI) 

networks and modified local node degree measures to 

prioritize Alzheimer’s disease genes  [6].  

While many network-based disease-gene ranking methods 

have been developed recently, there has not been a 

consensus how to evaluate their performances. In this paper, 

we describe a simple yet generic computational framework 

to perform and evaluate network-based disease gene-hunting 

methods. Using colorectal cancer gene finding as a case 

study, we report how various seed gene selection, PPI data 

quality, and ranking strategy could affect final gene-finding 

results. We also defined how specificity, sensitivity, and 

positive predictive values (PPV) could be used for 

performance evaluation criteria. We choose colorectal 

cancer because it is the third leading cause of cancer death in 

the US and our current knowledge of colorectal cancer genes 

is limited, making our results to carry special significance. 

Next, we will describe our methods and report our findings.  
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II. METHODS 

In Figure 1, we show an overview of the computational 

framework used in this study. It consists of two components: 

(1) Disease Gene Identification, in which we expand seed 

genes to disease-specific protein sub-network and 

subsequently generate a ranked list of disease-relevant 

genes; (2) Disease Gene Assessment, in which we 

quantitatively assess disease genes using statistical 

measurements including sensitivity, specificity and PPV. 

The relationships between the two components is the 

following: First, disease gene identification will be 

performed using a fixed set of gene-seeding, PPI sub-

network construction, and disease gene ranking strategies; 

then, we evaluate how sensitivity, specificity, and PPV are 

affected by varying choices of seed genes, PPI networks, and 

ranking strategy.  

 

A.  Seed Gene Selection 

   We consider three sets of colorectal cancer-related 

genes collected from different resources as seeds, which are: 

(1) the CORE1 set, derived from human curated databases 

by querying the OMIM [7] and KEGG [8] database for 

“colorectal cancer” and manually curating the set of 

genes/proteins; (2) the CORE2 set, derived from high-

throughput microarray data in the ONCOMINE [9] database 

by keeping only differentially expressed genes with p-

value<0.05 performed for colorectal cancer samples against 

controls; (3) the CORE3 set, derived from the Comparative 

Toxicogenmics Database (CTD [10]) by searching for 

colorectal cancer genes associated with >2 chemicals in the 

database.  

B. Protein Interaction Sub-network Construction  

   We expand seeds, using PPIs recorded in the Human 

Annotated and Predicted Protein Interactions (HAPPI) 

database [11] to construct colorectal cancer-specific PPI sub-

network. A unique feature of the HAPPI database is that the 

quality of PPIs comes with estimated confidence scores (a 

real value between 0 and 1) and star grades (an integer 

between 1 and 5). The higher the confidence score or the star 

grade number, the more likely the PPI is attributable to 

physical PPI events. In this study, we use PPI star grade to 

control disease-specific sub-network quality and coverage. 

We refer to the disease-specific PPI sub-network constructed 

from HAPPI quality star grade n and above as PPI-n. For 

example, PP1-3 includes all PPIs from HAPPI with quality 

star grade of 3, 4, and 5.  

C. Disease Gene Ranking Strategy 

We treat the disease gene ranking problem as a problem to 

calculate a weight for each protein in the disease-specific 

PPI sub-network. There are three ranking strategies being 

considered in this study: (1) Global degree strategy, in 

which we use the protein’s node degree in the global PPI-n 

network as the weight; (2) Local degree strategy, in which 

we use the protein’s node degree in the local (colorectal-

specific) PPI-n network as the weight; and (3) Edge-

weighted Promiscuous Hub subtraction (EPHS) strategy 

developed in [6], which is a variant of local degree strategy 

adapted by penalize the impact of low-quality promiscuous 

protein hubs on ranks defined by the following formula:  

∑ ∑−= ∈ ∈NETq NETq qpNqpconfkpr )),(ln()),(ln(*
    (1) 

Here, p and q are indices for proteins in the constructed 

network NET. k is an empirical constant. conf(p, q) refers to 

confidence score in HAPPI Database. N(p, q) holds the value 

of 1 if the protein p interacts with q. The rp score is the 

weight calculated to rank each protein in the network.  

In addition, we use TOP_M to refer to the M highest 

ranked disease-relevant proteins/genes given by a specific 

disease gene ranking strategy.  

D. Disease Gene Assessment 

To evaluate the disease-related gene list, the sets of Gold 

Standard Positive (GSP) and Gold Standard Negative (GSN) 

are constructed as illustrated in Figure 2.  

The following measurements are calculated to evaluate 

the performance of each disease gene identification method: 

(1) Sensitivity, calculated as the percent of correctly 

identified disease genes |TOP_M∩GSP|/|GSP|; (2) 

Specificity, calculated as the percent of correctly identified 

non disease genes |GSN-(TOP_M-GSP)|/|GSN|; (3) Positive 

Predictive Value (PPV), calculated as the probability of 

correct positive predictions |TOP_M∩GSP|/| TOP_M |.  

Figure 1. Computational Framework for Disease Gene 

Identification and Assessment. 

 
Figure 2. Gold standard construction for disease gene 

assessment. As shown in the striped area, GSP= 

(CORE1∩CORE2)∪(CORE1∩CORE3)∪(CORE2∩CORE3). As 

shown in the gray area, GSN=ALL-(CORE1∪ CORE2∪ CORE3). 

Note that ALL refers to all HAPPI human proteins. 
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III. RESULTS 

We developed three colorectal cancer seeds: CORE1, 

consisting of 148 proteins; CORE2 containing 42 proteins, a 

subset of 7410 proteins with p-value <0.05 consisting of 81 

samples from Oncomine data; and CORE3, consisting of 

721 proteins. With three choices of seeds gene selections 

(CORE1, CORE2, and CORE3), four PPI qualities (PPI-3, 

PPI-4, PPI-5, PPI-1), three ranking strategies (EPHS, Local 

Degree, Global Degree), we tested different combinations to 

conduct the disease gene findings and assessment for 

colorectal cancer.  

A.  Effect of Various Seed Gene Selection Methods 

In Figure 3, we show how seed selections affect the 

ranking results. In this experiment, we used PPI-3 as PPI 

network data source and the EPHS disease protein ranking 

method. The ranking index on the x-axis refers to a number, 

TOP_M, used to indicate the number of all rank-ordered 

proteins in a given expanded protein set consisting of both 

seed proteins and PPI-expanded disease sub-network. PPV 

for the initial top-10 or top-20 proteins for both core-1 and 

core-2 seeded strategies were at 0.7-0.8 range, suggesting 

high predictive power of top-ranked proteins for disease-

relevance. As ranking index increases, PPV decrease for all 

core seeded strategies. However, the performance for core-1 

is superior to both core-2 and core-3. This is perhaps due to 

the highly curated nature of core-1 seeds as compared with 

possible noises introduced by Omics data for core-2 and text 

mining data for core-3. Core-3 shows an overall poorer PPV 

performance, particular within top-20 compared with core-1 

and core-2. Beyond ranking index of 250, all core seeded 

strategies converged to low PPV within 0.15. Therefore, the 

relatively high predictive powers of all disease gene 

rankings seem to be restricted to the top 50.  

B. Effect of Various PPI Data Quality and Coverage 

In Figure 4, we show how PPI data used for network 

expansion affect the ranking results. In this experiment, we 

compared results using PPI-1, PPI-3, PPI-4, and PPI-5, using 

core1 as seeds and the EPHS ranking method. All PPI-n 

except for PPI-5 showed a similar trend of decreasing PPV. 

Again, the relatively high predictive powers (PPV>0.5) seem 

to be achieved at the top 50, except for PPI-5, then continue 

to decrease to very low levels (PPV<0.15) beyond a ranking 

index>400. It’s counter-intuitive that PPI-5’s performance, 

being the poorest, has a rising phase from ranking index 

between 10 and 50 before decreasingly significantly. This 

may be primarily due to the poor coverage of true colorectal 

cancer proteins in current physical PPI data sets 

representative of PPI-5 until enough proteins are covered in 

the top 40 or 50 set. Therefore, data coverage seems quite 

important in gene ranking performance overall. Also, at least 

in the top 10 case, the fact that PPI-3 has the best  PPV of 

0.8 over PPI-1 that has much higher data coverage suggest 

that PPI data quality is also important to discover disease 

genes in the most highly ranked protein set. Therefore, 

balanced data coverage and quality are essential for disease 

gene finding from such networks.  

C. Effect of Various Disease Gene Ranking Methods 

 In Figure 5, we show how the choices of different 

ranking methods affect the ranking results. The results are 

performed by fixing seed protein to core1 and using PPI-5 

for the expansion network. EPHS and Local Degree methods 

performed equally, while global degree performed extremely 

poor—although by sharing similar performance trend of the 

top-performing methods. The trend for all methods shows 

two phases: a PPV rising phase from top 10 to top 60-80; 

and a PPV decreasing phase from top 80 onwards. The 

separation of two phases is likely due to balanced PPI data 

coverage and quality as explained earlier.  

D. Sensitivity and Specificity Comparisons of Top 

Disease Gene Ranking Methods. 

 
Figure 3. PPV performance using different seed choices. 

 
Figure 4. PPV performance using different PPI-n networks. 

 
Figure 5. PPV performance using different disease gene 

ranking methods.  
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We further compared the sensitivity and specificity 

performances for the best two disease gene ranking methods, 

EPHS and Local Degree.  

Figure 6 shows a comparison of their specificity (on the y-

axis) performance distributed over different ranking index 

ranges (on the x-axis). The specificity performances of both 

methods are quite good overall, even at top 100 range 

(specificity>0.9). The EPHS ranking method is slightly 

better (more specific) than Local Degree ranking method. 

This is primarily because local degree method cannot 

distinguish nodes with the same number of node degrees, 

particularly when the node degree drops to small numbers 

such as 2 or 3 in the high ranking index region.  

Figure 7 shows a comparison of their sensitivity (on the y-

axis) performance distributed over different ranking index 

ranges (on the x-axis). The sensitivity performances of both 

methods are decent overall after ranking index range of top 

80 (sensitivity>0.75). The local degree ranking method is 

slightly better (more sensitive) than EPHS ranking method. 

The reason that local degree method performed better than 

EPHS ranking method is that there are many tied genes in 

local degree method due to their sharing the same node 

degrees. However, since most rankings should be performed 

in the low ranking index region, this slight loss of sensitivity 

for EPHS method can be ignored.  

 

IV. CONCLUSION 

In this paper, we performed disease gene finding from 

protein-protein interaction networks specific to colorectal 

cancer. We examined the effects of different seeds, different 

PPI data quality, and different disease gene ranking methods 

on the final performance of the task. While all of these 

parameters may impact the final performance, our results 

show that (1) the initial quality of seeds should be based on 

prior curated knowledge as much possible, with Omics 

results being the next choice and text mining results being 

the last resort; (2) disease gene ranking should be performed 

using PPI data with reasonable quality but as high data 

coverage as possible; (3) the ranking algorithm that takes 

advantage of local network parameters should be chosen 

over those using global network parameters. There are 

several limitations to our current research approach. For 

example, the gold standard positive set of genes used for 

evaluation had to be built by considering seed gene sets used 

for research studies due to convenience of computation. The 

observations made for this framework should be carefully 

validated in other disease contexts before they are 

generalized.  
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Figure 6.  A comparison of specificity performance between the 

EPHS and Local Degree ranking methods. 

 
Figure 7.  A comparison of sensitivity performance between 

the EPHS and Local Degree ranking methods. 
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