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Abstract— This paper presents a novel theoretical paradigm
for epileptic seizure prediction based on a coupled oscillator
model of brain dynamics. This model is used to investigate
prediction methods capable of tracking the synchronization
changes that may lead to a seizure. Previous results indicate that
state-space reconstruction of a coupled oscillator model from
an EEG-like signal is ill-posed, therefore, monitoring system
synchronization via the EEG signal is unlikely to give advanced
warning of imminent seizure activity. Through simulation, it is
shown that synchronization tracking may still be viable using
an input probing stimulus to actively seek information from the
coupled oscillator network.

I. INTRODUCTION

Epilepsy is a neurological disorder characterized by re-
current seizures which are associated with “abnormally ex-
cessive or synchronous neuronal activity in the brain” [1].
The transitions from non-seizure to seizure states often occur
with a synchronization of the recorded voltages on several
electrodes of electroencephalography (EEG) data. This is
thought to correspond with a synchronization of neural
activity across different brain regions.

Over the past 34 years many methods, including synchro-
nization measures, have been unsuccessfully applied to EEG
recordings for seizure prediction [2]. Here we approach the
epileptic seizure prediction problem with a very simplified
coupled oscillator network.

Despite this simplicity, such networks exhibit EEG like
behaviour from a measurement point of view. Our previous
results [3] show that in the most ideal abstraction of the
underlying problem, practical observability (assuming a finite
precision EEG measurement instrument) is not an obvious
property, even when the underlying system is observable in
the normal sense (i.e. for ideal measurements). This may
well explain why epilepsy prediction attempts based on
passive observation of EEG signals fail, because the actual
information cannot be gleaned from the EEG signal.

Because of the simplicity of our model, it is possible to
explore active signal probing as a means to early-detection
and prediction of epileptic events. This paradigm is explored
using simulation studies.

The remainder of this paper provides a further background
to the problem in section II, with details of the model de-
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scribed in section III. A paradigm for seizure prediction with
the model, including supporting proof-of-concept simulations
are presented in IV. Section V follows with a discussion and
conclusions on the relevance of these findings in a clinical
setting.

II. BACKGROUND

The reliable prediction of epileptic seizures would greatly
reduce the burden of epilepsy for an estimated 60 million
sufferers worldwide. Seizures manifest clinically in a variety
of ways, including loss of consciousness and involuntary
muscle contraction. In particular, the sudden and uncon-
trollable nature of the seizures is extremely debilitating for
patients. The ability to predict seizures could revolutionize
the treatment of epilepsy by facilitating strategically timed
intervention [4].

The EEG measures the temporal fluctuations of electrical
potentials recorded from the human brain. EEG is a non-
stationary signal that can be considered quasi-stationary
for periods in the order of 10s [5, p. 1200]. There are
macroscopic, mesoscopic and microscopic scales of EEG
measurement, measuring from the scalp, intracranial sources
and small groups of neurons respectively.

Considering the EEG is a volume-conducted spatio-
temporal average of neural activity, it is surprising that scalp
EEG reveals coherent information in the form of frequently
observable patterns related to specific states of consciousness
such as attention, concentration, agitation and relaxation
[5]. Simply by placing a pair of electrodes on a scalp,
the unprocessed differential recordings clearly show several
characteristic oscillations or rhythms in the range 0.1-200Hz
that are associated with various states of cognitive function.

Much of the seizure prediction work to date has involved
applying linear and non-linear techniques to both scalp
and intracranial EEG data in attempts to track synchrony
across brain regions. Linear methods have included cross-
correlation [6] and phase analysis based on the Hilbert
transform [7], [8]. Several non-linear techniques have utilized
the Takens/Aeyels Embedding Theorem [9] in an effort to
reconstruct the state space, with low embedding dimensions
of 7-16. Measures including correlation dimension [10] and
Lyapunov exponents [11] were applied to these reconstructed
state-spaces. All these approaches have failed to reliably
predict seizures better than a random predictor [2].

In light of this failure to predict seizures as the onset
of mass synchrony in the brain we used a coupled os-
cillator model to investigate what we may expect from a
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low-dimensional signal extracted from a high-dimensional
system. We found that the system observable in the EEG
was of much lower order than the true underlying system
[3], and here our approach to seizure prediction is tailored
accordingly.

Our model abstracts the problem to the study of a simple
network of linear oscillators (or mildly non-linear for e.g.
Van Der Pol oscillator) with linear interconnection. Such
a model neglects the complexities of biologically realis-
tic neuron-dynamics and instead formulates the problem
as a generic network of oscillators where an EEG-like
measurement is made. Synchrony of coupled oscillators is
undoubtedly a non-linear process, however, here we use
essentially a linear model. This choice was based on our poor
observability findings [3]. When the extent of information
that an EEG-like output can reveal is limited in the linear
case, non-linear efforts are unlikely to be more productive.

To represent seizure dynamics in terms of synchronization
events, a model based on coupled dynamical clock sub-
systems was created as described in (1). Each sub-system
represents a region of brain tissue that is oscillating at
a certain frequency. As the EEG is the weighted sum of
oscillating potentials in the brain, the output in this model
is the weighted sum of many pendulum oscillations. This is
quite a generic and scalable model. On a microscopic scale,
each pendulum represents only a small group of neurons and
the output measure would model depth-EEG recording from
a micro-electrode. This model could equally apply up to the
global macroscopic scales, where each pendulum represents
a large area of brain tissue.

The model described in section (III) model also facilitates
the inclusion of an input probe stimulus. The inclusion of an
input probe stimulus follows recent developments in epileptic
seizure prediction that have focused on an active response
model rather than the traditional passive EEG measurement
[12]. The active response paradigm involves measuring the
EEG following a stimulus (e.g. electric pulse) to a brain
region.

A very similar coupled-oscillator model was described
by Wright et al. in 1985 to model state changes in the
brain [13]. Their motivation for a generic model was that
the existing brain models of the time where constrained by
“simplified neuronal relationships and laws of interaction”,
whose “ideas are difficult to put to critical test, and each
[model] necessarily ignores certain problems treated in the
others”. Mathematical models have developed considerably
since this work, however, Wright’s comments still stand, in
that, these models are not yet at a level of sophistication
suitable for parameter fitting to EEG for the specific purpose
of seizure prediction.

III. A COUPLED OSCILLATOR MODEL

EEG recordings from brain tissue are modeled as the
output measurement from a system of networked clocks.
Each individual oscillator is modeled as a pendulum clock
with the oscillatory motion of the pendulum described as

ẍi + 2ζiωiẋi + ω2
i xi = F, (1)
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Fig. 1. The interconnection of N pendulum clock subsystems. αij is the
coupling strength between sub-system i and j. The grey signals are inputs
to the system.

where x is the angular position of the pendulum, ζ is the
damping parameter, ω is the natural frequency of oscillation
and F is the forcing term. F could take the form sin(ωint)
for an external input and

∑
j αij(xi−xj) for coupling of the

position state from other pendulums. ωin denotes any input
frequency.

To convert the characteristic equation (1) into a state space
format, the states for clock system 1 can be labeled as x11

and x12 which are defined as follows: x11 = x1 and x12 =
ẋ1. The time derivatives of the states are then ẋ11 = x12

and ẋ12 = ẍ1 = −2ζ1ω1x12 − (ω2
1 − α12)x11 − α12x21 +

sin(ωint), where x21 is the 1st state of system 2.
The resulting state space model for an interacting system

of two pendulums is ẋ = Ax + Bu, where u is the input
signal and the A and B matrices are as follows:

A =

 0 1 0 0
−ω2

1 + α12 −2ζ1ω1 −α12 0
0 0 0 1
−α21 0 −ω2

2 + α21 −2ζ2ω2

 (2)

B =
[

0 1 0 1
]′
, (3)

where prime(′) denotes transpose.
This can be extended to an 2N state system, where

there are N interconnected pendulum clock subsystems, as
illustrated in Fig. 1. Each subsystem is allowed to connect to
all the others and αij ≡ αji (symmetric coupling). Random
graphs can be constructed by choosing αij ≥ 0 from a
distribution of values.

The output state equation for a single recorded EEG
channel can be described by y = Cx, where

C =
[
δ1ω

2
1 0 δ2ω

2
2 . . . δnω

2
2N 0

]
. (4)

The output is a convex combination of the frequency-
scaled position states in the system (δi ≥ 0,

∑
i δi = 1).

The states are frequency-scaled with a corresponding natural
frequency, ωi, such that the transfer function, G(s) = C(sI−
A)−1B, is normalized to 1 at DC. δi ≥ 0 indicates the
relative contribution clock i makes in the EEG output signal.
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Fig. 2. The simulation experimental set-up for a network of 25 coupled
oscillators with 4 EEG channels.

Even when this system is observable in the normal sense
of the word, it turns out that the simple limitation of a finite
precision measurement reduces our ability to distinguish all
states drastically. EEG machine A/D resolution typically
ranges from 14-24 bits [14], [15]. The distribution of the
singular values of the observability matrix demonstrates that
for all practical purposes observability is an illusion given
the precision range of 214 − 224 levels in the measurement.

In that case, why is epilepsy even detectable as a syn-
chronous event via large scale EEG measures on the cortex
and scalp? These observability findings imply that the brain
must be in an very advanced state of synchronization across
a large area of cortex before it can be seen in the EEG.
This underscores why seizure detection may be successfully
completed from EEG signals and suggests that prediction
based on large scale EEG measurements may be an elusive
goal.

IV. A PARADIGM FOR SEIZURE PREDICTION

A fully observably system would enable a reconstruction
of the model to be estimated and tracked over time from
the EEG. However, we find this unlikely to be feasible with
the EEG signal. An alternative to parameter tracking and
state-space estimation for seizure prediction is investigated
in this section. In particular, we study what can be learned
by probing the system with an input.

In our model we equate prediction of seizures with ev-
idence of synchrony between many individual oscillators
before synchrony is visible in our EEG electrode recordings.
Synchrony is defined as sustained phase locking to a partic-
ular frequency and is computed as the least squares solution
to the model

X(t) = A cos(2πft+ φ) + w(t) (5)

where f is the known frequency of the input stimulus, w(t)
is zero mean white noise and the phase, φ and amplitude,
A = A(f), are estimated (see [16, Ch. 7] for the details of the
least squares solution). X(t) can be either (1) the EEG signal
used to estimate the phase-locking response to our probe
stimulus, or (2) the internal states of the model to determine
phase for individual clocks to establish if predictions from
the EEG data correspond to a true picture of the underlying
system activity. This definition of phase synchrony is used as
it is more robust than the Hilbert transform in the presence

of noise and can be used on broadband signals without any
ambiguities.

The simulated coupled oscillator network was configured
as shown in Fig. (2). There are 4 electrodes each influenced
by the individual oscillators in their immediate vicinity. The
network was interconnected with coupling parameters αij ,
chosen uniformly in the range 0-0.01. The system’s natural
frequencies, ωi, were randomly chosen from a uniform
distribution spanning from 0.5 Hz-100Hz. To stimulate the
case of synchronization build up throughout the network, the
damping parameters, γi, were chosen uniformly in the range
0.001 to 0.01. The generation of a seizure was modeled by
expanding (1) for a single clock in the network to include
a non-linear element, creating a Van der Pol oscillator with
system equation ẍ+ (εx2 + 2ζω)ẋ+ω2x = F . By allowing
a negative damping parameter, ζ, in this non-linear clock
an unstable (marginally stable) oscillator was formed which
would slowly take over the entire network.

The prediction paradigm was centered on the knowledge
that a stable coupled oscillator network (modeling the normal
brain state) only has significant responses to input frequen-
cies in close proximity to the system natural frequencies
(ω1 · · ·ωn). Investigative probing can enable the collection of
normal system responses, A(f), with a library of natural fre-
quencies found as the peaks in this spectrum. In general we
hypothesize that the seizure state will exhibit a significantly
altered response to probe stimuli. One likely alteration to the
system response is that subsequent probing with the system
frequencies should elicit a measurable response in the EEG,
except when the network propagates into a seizure state. In
the seizure state, individual oscillators are synchronized to
the frequency of the unstable oscillator and are therefore
non-responsive to any probing stimulus (of sufficiently low
stimulation level for patient safety). Sufficiently low stimula-
tion implies that we would be operating in the subthreshold
region to avoid inducing a seizure. Subthreshold stimulations
are routinely used in epilepsy surgery for mapping purposes.

Our approach to seizure prediction is to monitor when
the response to probe stimuli, A(f), is significantly altered
from the library of normal responses. If we get such an
altered response on several adjoining electrode stimulation
sites we can infer that the underlying brain matter may be
in a seizure state. We hypothesize that the early seizure state
will exhibit an altered response in advance of the seizure
state being visible as synchronization across EEG channels.
This hypothesis is based on the knowledge that the signal at
the EEG channel is a function of much fewer oscillators than
are present in the system, thus an oscillation would have to
be widespread across the network before it is visible at the
EEG level.

Sample EEG signals generated from the coupled oscillator
model are shown in Fig. (4). Simulation results providing
proof-of-concept are illustrated in Fig. (3). In this simulation,
a poor response to normally-resonant probe stimuli was
found in advance of visible synchronization (seizure activity)
at the EEG level. This paradigm acts as a predictor of very
immediate seizures and could be considered a form of early
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Fig. 3. The simulated time evolution of a synchronization (or seizure event)
in the coupled oscillator model. Note that from t=0 seconds clock number
3 was unstable, by 2.9 seconds there was no longer a response to input
probe stimuli in electrode one. However, it was not until t=3.48 seconds
that synchronization to the unstable natural frequency was measurable in
the majority of EEG electrodes. Prediction therapy time window = 3.48-
2.9= 0.58 seconds.
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Fig. 4. Sample EEG signals generated from the coupled oscillator model.
The upper-trace shows the EEG signal corresponding to electrode number 2
in Figure 3. This is the weighted sum of the states from 4 clocks (n=4). The
trace becomes synchronized to the unstable oscillator at 3.48 seconds. The
lower trace is an example of the weighted sum of all 25 clocks (n=25) in
the “normal” (stable) system, illustrating the increase of signal complexity
with model order.

detection. However, early detection could prove sufficient to
provide a therapeutic window for seizure abating stimuli in
an implantable seizure control device. Note the time of the
therapeutic window was 0.58 seconds for this simulation,
which was entirely dependent on the choice of damping and
coupling parameters in the model. A realistic estimate of
therapeutic window time in real brain matter would require
clinical data from probe stimuli.

V. DISCUSSION AND CONCLUSION

We have provided, for a very simplistic abstraction of
the real problem, a seizure prediction paradigm based on
synchrony for use with EEG measurement using an input
probe stimuli. While the therapeutic window following pre-
diction may be small, strategically placed electrodes at the

seizure focus may enable synchronous activity to be found
and abated prior to the emergence of clinical symptoms of
epilepsy.

For this paradigm to be a viable clinical option stationarity
and repeatability issues need to be addressed. The EEG is
inherently non-stationary, however, the EEG may remain
quasi-stationary for periods long enough to build up a library
of “normal” responses to stimuli. Also, it needs to be
established if the real brain system responses to probe stimuli
are repeatable to some degree. This last question could be
rephrased as, can the brain response be approximated by a
linear system for certain stimuli?

Our future work is to analyze data from evoked potentials
in the epileptic brain to inform further model development.
We hope that such development can in turn inform the
experimental procedure of active EEG towards successful
clinical seizure prediction.
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