
  

  

Abstract—Most brain-computer interface classification 
experiments from electrical potential recordings have been 
focused on the identification of classes of stimuli or behavior 
where the timing of experimental parameters is known or pre-
designated. Real world experience, however, is spontaneous, 
and to this end we describe an experiment predicting the 
occurrence, timing, and types of visual stimuli perceived by a 
human subject from electrocorticographic recordings. All 300 
of 300 presented stimuli were correctly detected, with a 
temporal precision of order 20ms. The type of stimulus 
(face/house) was correctly identified in 95% of these cases. 
There were ~20 false alarm events, corresponding to a late 2nd 
neuronal response to a previously identified event. 

I. INTRODUCTION 
EURONAL populations in early visual cortex process 
different classes of visual information in the same 

cortical surface area, dependent on the spatial location of the 
stimulus in the visual field, rather than the class of visual 
input. Higher order inferotemporal visual areas instead 
represent different classes of visual stimuli with distinct 
cortical surface regions.  For example, face and house visual 
stimuli are represented in distinct, adjacent inferotemporal 
areas [1]. Using ECoG, we measured from both of these 
visual areas simultaneously and attempted to spontaneously 
identify visual stimuli and assign them to one of two classes, 
faces or houses. Previous brain surface ECoG studies have 
demonstrated class specific representation (particularly 
faces) by averaging raw potential measurements from many 
within-class visual stimulus presentations [2]. Rather than 
examine fluctuations in the raw potential, we employed a 
new technique for extracting broadband temporal power 
spectral estimates which recently has been shown to capture 
robust local neuronal population activity [3, 4], and 
demonstrate that it can be used to capture, with high 
temporal fidelity, the cortical responses to spontaneous face 
or house visual stimuli. 
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Fig. 1.  Electrocorticographic arrays were placed on the subtemporal 
cortical surface of an epilepsy patient (A). Simple, luminance and 
contrast matched, grayscale faces and houses that were displayed in 
random order for 400 ms each, with inter stimulus intervals of 400 ms. 
The ECoG signal was re-referened to the common average (B) and for 
each electrode 1 second epochs centered at the middle of each 
stimulus presentation, , were selected to calculate the power 
spectral density (PSD; ). Based upon many samples of the 
PSD, a covariance matrix between frequencies was estimated, 
diagonalized using a principle component technique to isolate 
broadband spectral change. As shown in (C), a continuous time-
frequency approximations of the PSD, , was  calculated 
using a wavelet approach. The continuous time frequency 
approximation was then projected into the 1st principal component 
(corresponding to broadband change), associated with the time-
varying neuronal population activity, . (D). Following an 
estimated ( ) or actual ( ) stimulus event time, the total response 
magnitude (  or , in pink) could be estimated, as shown in (E). 
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II. METHODS 

A. Experimental setting 
   A 32 year old male epileptic patient was implanted with a 
surface electrode array in his left hemisphere (Fig 1) to 
localize a seizure focus prior to surgical resection. While 
this electrode array was in place, he participated in a visual 
experiment. Pictures of simple, luminance and contrast 
matched, grayscale faces and houses were displayed in 
random order for 400ms each, with 400ms inter-stimulus 
interval between (Fig 1). He was asked to report a simple 
target (a single upside-down house), while the electrical 
potential was measured from each platinum electrode (each 
has 2.3mm diameter exposed, separated by 1cm. Ad Tech, 
Racine WI), with location determined from x-ray [5].  
 

B. Signal processing 
The ECoG potentials were measured with respect to an 
electrode on the scalp, and then were re-referenced with 
respect to the common average reference across all 
electrodes. From each electrode, , samples of power 
spectral density (PSD; ) were calculated from 1 
second epochs of the raw potential,  (Fig 1), centered 
at the middle of each stimulus presentation, . These 

, were normalized in two steps: each spectral 
sample was divided by the average PSD, and then the log 
was taken.  
A principal component method was applied to these 
normalized PSD samples to identify motifs of spectral 
change [3]. For each electrode, the eigenvalues, , and 
eigenvectors, , of a covariance matrix  between 

 
Fig. 2. Correlation ( ) as a function of latency from task onset (τ) for faces (A) and houses (B). When the maximum (circle at the peak) 
correlation of neuronal population activity ( ) with the stimulus function ( ) was above the threshold of 0.2, an electrode was said to be 
significant. Electrodes significant for faces are yellow-orange-red, for houses, blue and electrodes that are significant for both are green. Black and gray 
electrodes were not significant. The position of the electrodes on template brain (C). Neuronal population activity ( ) at a function of time (ms) 
during face (light gray) and house (dark gray) stimulus presentation. (D). Faces and houses were presented for 400 ms, with an inter-stimulus interval of 
400 ms. Electrodes are colored as in A and B, colored electrodes are ordered by peak latency from stimulus onset with the shortest latency at the bottom. 
Non-responsive black electrodes could not sensibly be ordered.  
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frequencies reveal the robust common features during visual 
perception. The most significant of these eigenvectors ( , 
with largest eigenvalue , and roughly equal contribution 
from all frequencies) has been linked to local population 
activity (mean firing rate of the underlying population [4]). 
Continuous time-frequency approximations of the PSD 
(dynamic spectra, ) were calculated using a 
wavelet approach (complex Morlet filter, with 7 cycles, at 
each Hz). The projection into the 1st principal component 
can then be estimated at each point in time, after first 
normalizing the continuous spectra (first by dividing 
through by the mean spectrum, and then by taking the log). 
Then, the projection of the continuous spectra, 

 is smoothed (with a Gaussian of SD 12ms), 
and re-exponentiated to obtain the continuous quantity, 

, associated with the time-varying neuronal population 
activity (Fig 1).  

 
C. Relevant electrodes, and response latencies 
The electrodes which covered important visual regions, 
along with their associated response latencies, were 
determined in the following fashion: “Stimulus functions” 
{ , , } were created by placing Gaussians of 
width SD=60ms centered at the onset of {face, house or 
both face and house nonspecifically} stimuli. The 
correlation between each of these stimulus functions and the 

 electrode were calculated:  

 

These are shown in Fig 2. Here , where 
overline bar denotes mean, and  denotes standard 
deviation. If  is below a set threshold (0.2 in this 
case) for all , then the neuronal population beneath 
electrode  does not respond to face stimuli. The value of  
for which  is maximized reveals the latency from 
stimulus presentation to cortical response in electrode .  

 
D. Event detection and stimulus type classification  

These methods were trained on 2/3 of the data, tested on 
the remaining 1/3, and subsequently cross-folded 3 times for 
validation. 
1) Event detection: The visual response was collapsed by 
projecting latency shifted  from all visually 
relevant electrodes (colored electrodes in Fig 2c) into to a 
single “response channel” ( ) for detection using task-
related principal component analysis (Fig 3, [6]). The times 
of peak “visual response” were assumed to be most likely to 
correspond to stimulus onset times, because all electrodes 
had been shifted by their latency to peak prior to projection 
into . Identification of these peaks in testing data were 
determined by smoothing  (with an SD=20ms Gaussian) 
and then calculating predicted visual event times  for 
which  was a local maximum for 200ms in either 
direction and greater than 1 SD from baseline (baseline and 
SD from training period, see Fig 3). When correctly 
identified, the predicted times of visual stimulus onset  
could be compared with times of actual stimulus onset . 
2) Event classification: The “total response” to a stimulus at 
time /  was determined as the time integral from 100-
600ms following the actual/predicted visual onset time (Fig 
1, denoted / ). These  were then classified as 
following face or house stimuli, using 3-fold cross-
validation, based upon training on  (Linear Fisher 
Discriminant Analysis). 

III. RESULTS 

A. Correlations with stimuli are shown in table 1 

B. Event detection 
There were 300 visual stimuli presented. All of these were 
correctly identified, but 22 incorrect events were also 
detected. Further inspection revealed that 21 of these 22 
were late, “second responses” (Fig 4) following a correct 
response prediction. The last error was truly incorrect, 
clearly uncorrelated with the onset of any stimulus. 

Fig.4.  Visual response amplitude ( ) in 21 of 22 incorrect 
detected events (red) These incorrect detected events reflect second 
responses, after correctly identified events (black). 

Fig.3. Neuronal population activity ( ) light colors) in visually 
relevant electrodes was shifted in time to align peak latencies 
( , dark colors). Electrode colors correspond to Fig 2c. A 
task related principal component analysis (trPCA) collapsed the set of 

 into a single visual response channel ( , black), whose 
peaks (pink) reflect estimated visual onset times, . 
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C. Presentation time prediction 
Of the 300 correctly identified events, the mean error 
(average absolute prediction time error) was 22.98 23.23ms 
(mean SD) (faces=21.71 15.69ms, houses=24.25  
28.87ms, Fig 5). The systematic error (average discrepancy 
keeping +/- sign of error) was 9.29ms (faces = 11.65ms, 
houses=-6.92ms). The distribution of temporal errors for 
houses and faces were not statistically distinguishable from 
each other (p = 0.19, unpaired t-test). 

D. Classification accuracy 
The classification accuracy of correct stimulus-type (faces 
vs. houses) was 94.7% (faces: 96.0%; houses: 93%). 

 

IV. DISCUSSION 
The correlation calculation illustrated in Fig 2 and table 1 

is obviously less than perfect, but that is because arbitrary 
60ms SD Gaussian kernels were used as model for neuronal 
population activity response functions. They were chosen a 
priori thus were clearly not physically motivated nor 
sophisticated, although they were sufficient to identify 
relevant electrodes – and a useful metric to determine 
correlation with the stimulus.  

Although the experiment was periodic, and therefore 
accuracy in estimated stimulus presentation events and 
timing could potentially be explained trivially, the method 
was explicitly blind to any timing between events and all 
prior testing result. Furthermore, analysis of resulting event 
detection and timing reveals that errors in timing were not 
systematic with respect to prior stimulus accuracy or timing.  

Except for one case, incorrectly identified events were 
due to a “late 2nd response”. The remaining one occurred at 
the end of an experimental block and may be behavioral (the 
subject glancing at an examiner, etc). There was a ~10ms 
systematic error in the estimated time of stimulus. This was 
not due to outliers (see Fig 5), and perhaps was due to fact 
that latencies were compared with symmetric (Gaussian) 
response function, but the responses were heavy-tailed to 
later times from peak. Therefore, latencies in electrode 
responses were overestimated (by net order ~10ms), and the 
subsequently estimated stimulus times were systematically 
~10ms too early. 

 

V. CONCLUSION 
This study demonstrates conclusively that the timing and 

type of visually stimuli can be robustly predicted from the 
continuously measured electrocorticogram from the surface 
of visual regions in human cortex.  

ACKNOWLEDGMENT 
We would like to thank the patient, and the staff and 

physicians at Harborview hospital, in Seattle, WA. 

REFERENCES 
[1] A. Ishai, L. G. Ungerleider, A. Martin, J. L. Schouten, 

and J. V. Haxby, "Distributed representation of objects in 
the human ventral visual pathway," Proc Natl Acad Sci U 
S A, vol. 96, pp. 9379-84, Aug 3 1999. 

[2] T. Allison, G. McCarthy, A. Nobre, A. Puce, and A. 
Belger, "Human extrastriate visual cortex and the 
perception of faces, words, numbers, and colors," Cereb 
Cortex, vol. 4, pp. 544-54, Sep-Oct 1994. 

[3] K. J. Miller, S. Zanos, E. E. Fetz, M. den Nijs, and J. G. 
Ojemann, "Decoupling the Cortical Power Spectrum 
Reveals Real-Time Representation of Individual Finger 
Movements in Humans," Journal of Neuroscience, vol. 
29, p. 3132, 2009. 

[4] K. J. Miller, L. B. Sorensen, J. G. Ojemann, and M. den 
Nijs, "ECoG observations of power-law scaling in the 
human cortex," In Review (pre-print at 
http://arxiv.org/PS_cache/arxiv/pdf/0712/0712.0846v1.p
df), 2009. 

[5] K. J. Miller, S. Makeig, A. O. Hebb, R. P. N. Rao, M. 
denNijs, and J. G. Ojemann, "Cortical electrode 
localization from X-rays and simple mapping for 
electrocorticographic research: The “Location on 
Cortex”(LOC) package for MATLAB," Journal of 
Neuroscience Methods, vol. 162, pp. 303-308, 2007. 

[6] K. J. Miller, A. O. Hebb, J. G. Ojemann, R. P. N. Rao, 
and M. denNijs, "Task-Related Principal Component 
Analysis: Formalism and Illustration," IEEE Eng Med 
Biol Soc., pp. 5469-5472, 2007. 

 
 

 
Fig.5. Timing prediction errors 

TABLE I 
CORRELATION WITH “STIMULUS FUNCTIONS” 

 Specificity Peak correlation Latency to peak (ms) 

Face 0.3598 252 
Face 0.5825 234 
House 0.6456 216 
House 0.5918 201 
Both 0.5218 197 
Face 0.2760 195 
Both 0.4298 192 

    
 Both 0.7250 0 

Table of peak correlations, ; “Specificity” denotes most 
appropriate stimulus {face, house, both face and house}; “Peak 
correlation denotes maximum value of ; “Latency to peak” denotes 
the value of  at which  was maximum. 
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