
  

  

Abstract— What is the optimal number of electrodes one can 
use in discrimination of tasks for a Brain Computer Interface 
(BCI)? To address this question, the number and location of 
scalp electrodes in the acquisition of human 
electroencephalography (EEG) and discrimination of motor 
imagery tasks were optimized by using a systematic 
optimization approach. The systematic analysis results in the 
most reliable procedure in electrode optimization as well as a 
validating means for the other feature selection techniques. We 
acquired human scalp EEG in response to cue-based motor 
imagery tasks. We employed a systematic analysis by using all 
possible combinations of the channels and calculating task 
discrimination errors for each of these combinations by using 
linear discriminant analysis (LDA) for feature classification. 
Channel combination that resulted in the smallest 
discrimination error was selected as the optimum number of 
channels to be used in BCI applications. Results from the 
systematic analysis were compared with another feature 
selection algorithm: forward stepwise feature selection 
combined with LDA feature classification. Our results 
demonstrate the usefulness of the fully optimized technique for 
a reliable selection of scalp electrodes in BCI applications. 

I. INTRODUCTION 
RAIN Computer Interface (BCI) is an alternative 
communication pathway between the brain (human or 

animal) and an external device (e.g. computer) with the hope 
to give greater ability to severely disabled patients without 
reliable muscular ability to interact with their surrounding 
environments [1, 2]. In BCI development, neuronal signals 
are translated into commands to build a direct interface 
between the brain and a device. Although invasive 
techniques have shown recent promises in the application of 
BCI [3-9], non-invasive techniques such as scalp EEG based 
methods may be useful and more easily applied [10, 11].  

In a BCI system, a classification algorithm discriminates 
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mental task performance by identifying the subject-specific 
EEG patterns corresponding to each mental task. With the 
availability of electrode caps and nets for EEG acquisition 
with increased number of electrode channels, it is possible to 
use as many electrode channels as possible for this kind of 
study. However, it is essential to know if too many electrode 
channels, as available, really add more information for the 
task discrimination under study.  If all available features are 
used to train a classifier, the risk of data over-fitting 
increases. Too many electrode channels and corresponding 
features also increase computational complexity to the 
degree that makes real-time BCI application infeasible. 
Therefore, a dimensionality reduction technique should be 
employed to find a subset of electrodes that minimizes the 
error of task discriminations.   

Typically, in BCI study, electrode locations are selected 
arbitrarily from scalp area corresponding to the motor 
cortical regions without much systematic study. Two 
different methodologies such as principal component 
analysis (PCA) [12-14] and independent component analysis 
(ICA) [14-16], have been widely adopted for data reduction 
in BCI research. These methods transform the original 
features into alternative dimensional spaces where the 
dimensionality reduction is simpler.  Recently, Georgopoulos 
et al [17] employed a sub-exhaustive search of sensor pairs 
in order to discriminate magnetoencephalography 
correlations reflective of a variety of disease states. As 
computational power increases, it is now possible to fully 
optimize discrimination analysis by taking all possible 
combinations of electrodes for feature classification. Using 
this strategy, Kruglikov et al [18] presented an optimization 
study on the discrimination analysis of physiological 
responses to auditory stimuli and showed that an optimized 
discrimination performance can be obtained with a relatively 
small number of electrodes. We here conducted a systematic 
optimization on the number of electrodes in EEG acquisition 
required for task discrimination in motor imageries, which 
has not been, to the best of our knowledge, done before.  

II. METHODS 
In data acquisition , preprocessing, feature extraction, and 

feature classification, we used the same procedures as 
described in our earlier work [19, 20].  However, to give a 
complete picture of the algorithm developed in this paper, 
we below provide a short description of these procedures.  

A. Experimental Paradigm 
Five healthy human subjects, 25 to 32 years old, four 

males and one female, none of them under any kind of 
medication, participated in the motor imagery tasks. The 
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experiments were conducted under Institutional Review 
Board (IRB) approval at Penn State University. Each subject 
conducted one session of tasks that consisted of four runs 
each with 40 trials. Each trial was designed as follows: the 
subject would be quiet and relaxed, a cross would appear on 
the computer screen, a left, right, up, or down arrow, 
depending on the task to be performed, would appear during 
which time the subject would imagine the task, and then both 
the cross and arrow would disappear to end the trial. Of the 
four total runs, the first two were designed for imagery left or 
right hand movements and the last two runs were for imagery 
tongue or bilateral toe movements. Of the 40 trials in the left 
or right hand movement task, 20 randomly permutated trials 
showed “left” arrows indicative of imagined left hand 
movements and the other 20 showed “right” arrows 
indicative of imagined right hand movements. Similarly, 
“up” or “down” arrows were used for tongue or toes tasks. 

 

B. Data Acquisition and Pre-processing 
Nineteen monopolar electrode positions (FP1, FP2, F7, 

F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, 
and O2 as per the International 10-20 standard electrode 
locations) referenced to linked earlobes were selected for 
acquiring EEG under open loop conditions while the 
participants performed the imagery tasks. Data were sampled 
at 256 Hz rate and passed through a fourth order band-pass 
Butterworth filter of 0.5-60 Hz. 

Data Preprocessing: Data were epoched from two s 
before to 4 s after the presentation of each arrow cue. 
Recordings were visually inspected for artifacts, and by 
using an amplitude threshold (55 µV) criterion. Trials that 
contained artifacts were excluded from further analysis.  

Data Transformation: Two different techniques were 
applied on the EEG signals acquired using linked earlobe 
reference electrodes (a referential montage) to increase the 
spatial resolution and decrease the dependence on the 
reference location. In a referential montage, each channel 
represents the difference between a certain "recording" 
electrode and a designated reference electrode, typically at a 
different position than the "recording" electrodes. A popular 
reference, which was used here, is "linked earlobes". The 
Laplacian derivation [21-24] is a discrete second derivative, 
calculated as the difference between an electrode and a 
weighted average of the surrounding electrodes. Laplacian 
derivations were developed for 9 inner loop channels (F3, 
Fz, F4, C3, Cz, C4, P3, Pz, P4) using four channels 
surrounding each active channel for deriving the weighted 
average. In the common average reference (CAR) 
calculation, the outputs of all of the amplifiers were summed 
and averaged, and this averaged signal was used as the 
common reference for each channel. CAR was applied to the 
19 channels described above. 

 

C. Model-based Feature Extraction  
Model-based responses and features were used for the 

motor imagery task discriminations. Model based techniques 

have the potential to use advanced control systems theory in 
the development of BCI to achieve improved performance 
compared to the performance achieved by currently applied 
proportional control or filter algorithms. We here adopted an 
autoregressive (AR) model-based technique for feature 
extraction from the EEG signals [19, 20]. Unit step 
responses were generated for each of the AR models 
developed using preprocessed and transformed EEG signals. 
Then, we used step response parameters such as rise time, 
settling time, and peak time as the discriminative features for 
pattern classification. 

We used an AR model as the simplest of time series 
models to fit the scalp EEG data from each channel. The AR 
model is written as: 
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where y(t) represents output, n defines the model order, a1, 
a2, …, an are model parameters, and εt is white noise. The 
model parameters can be estimated using a least squares 
technique by fitting scalp EEG time series. 
Step Response Generation: The step response of a dynamic 
model is the output signal that results when the input is a unit 
step. Characteristic parameters of the step response include: 
rise time, defined as the time required for the response to 
reach a certain level (e.g. 80%-90%) of the steady state 
value; settling time, defined as the time required for the 
response to reach and remain at the final value with a certain 
error band; and peak time, defined as the time at which the 
maximum overshoot occurs [25]. Note that in an AR model 
structure, there is no external input and the step response 
would be in response to a step change in the noise signal, 
while the ongoing signal remains the same. For each 
electrode, we extracted 3 step response coefficients: rise 
time, peak time, and settling time for each 1s time segment 
after the cue (4 total time segments). 
 

D. Feature Optimization 
We here chose all possible combinations of electrodes. For 
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combinations. We calculated 29-1=511 combinations of 9 
electrodes common in the referential, Laplacian, and CAR 
data sets. For each electrode combination, we calculated 
linear discriminator functions and computed classification 
error rates as described in the next subsection. In order to 
compute classification error for a particular combination, it 
was necessary to calculate 240 discriminators (four classes: 
left hand, right hand, tongue, and toes movements in each of 
the 4 time segments in each of the 3 data sets (referential, 
Laplacian, and CAR) for 5 subjects), for a total of 240 × 511 
= 122,640 discriminators. The combination of electrodes that 
resulted in the lowest classification error was accepted as the 
optimal number of electrodes for a specific subject. Note 
that, on occasions, multiple combinations resulted in the 
same classification error. In those cases, the combination 
with the smallest number of electrodes was selected as the 
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optimum combination. Work is in progress for a systematic 
optimization of 27 features (3 features for each of the 9 
channels) per task per time segment per subject. This 
calculation will require 227-1=134,217,727 combinations of 
features for each of the four time segments for each of the 
four tasks and for each of the 5 subjects in each of the 3 data 
sets. High performance computing is in application to 
conduct these calculations and will be reported in the future. 

We also employed another feature selection algorithm 
(forward stepwise) to the same data and compared the 
classification errors resulting from these two algorithms. We 
briefly describe the stepwise algorithm below.  

  Stepwise Method: The discriminant stepwise method [26, 
27] is based on a multivariate canonical discrimination 
technique and uses correlation of variances to remove 
features with insignificant discrimination effect. The largest 
absolute value of the correlation between each column of the 
original feature matrix Y and a transformed observation 
vector z corresponds to the first selected variable. Iteratively, 
the criterion is compared with canonical functions generated 
from: 1) adding an extra variable from the remaining 
variable set, 2) replacing a previously selected variable by 
one from the remaining variable set, or 3) removing a 
previously selected variable. More details of this method are 
described in [27, 28]. 

 

E. Task Discrimination 
We here used a linear discriminant analysis (LDA) 

algorithm  as implemented by Schiff et al  [29]. This LDA is 
a numerical approach based on a coordinate system change 
that uses singular value decomposition of the covariance (of 
the feature) matrix to find a set of canonical discrimination 
functions. A 10x10 cross validation that mixes the data 
randomly into 10 segments of which 9 segments are used for 
training, the tenth is used for validation, with the error 
averaged over all training/validation combinations, was used. 

III. RESULTS AND DISCUSSION 
We here conducted a systematic optimization on the 

number of electrodes in EEG acquisition required for 
discrimination of four imagery tasks (left vs. right hand and 
tongue vs. toes movements). Model-based features such as 
step response parameters corresponding to the AR models 
developed using acquired and transformed EEG signals for 
each trial for each of the 5 subjects were used.  

Classification errors resulting from the systematic 
optimization along with the errors calculated from the 
stepwise feature selection algorithm are plotted in Fig. 1(a) 
for the Laplacian transformed signals for Subject 1. The 
number of selected electrodes by the systematic approach 
should be, theoretically, equal to the number of electrodes 
selected by any other optimization methods, if that method is 
truly optimized. A comparison between the systematic 
approach and any optimization algorithm using statistical 
analysis would indicate the reliability of that algorithm. This 

means that those algorithms showing any difference or 
inconsistency in electrode or feature selection for a specific 
application should be more carefully used. 

Feature combinations corresponding to the lowest error by 
the stepwise selection method were mapped back to the 
electrode channels and are presented on Figs. 1(b) and 2 for 
the Laplacian transformed signals for all 5 Subjects. A two-
way multivariate analysis of variance (MANOVA2) was 
conducted to see any significant difference in channel 
selection between the systematic and the stepwise 
algorithms. The results are presented in Table I. It appears 
that the two selection algorithms are statistically different 
(P>χ2(10.8)=0.0045) with a given 95% confidence limit 
when all the data transformation (referential, Laplacian, and 
CAR) and both task pairs (left vs. right and tongue vs. toes 
movements) were considered simultaneously for all five 
subjects. The electrode selection is not significantly different 
(P>χ2(3.9)=0.42) with a given 95% confidence limit for the 
three data transformation techniques. There was no 
significant interaction between the optimization techniques 
and data transformation methods (P>χ2(1.1)=0.9). It is 
evident, in the limited context presented here, that the 
stepwise algorithm should be carefully applied for a reliable 
feature selection. As noted earlier, ongoing work on a 
systematic optimization of all the 27 features will provide 
more information to make a definitive conclusion.  

The proposed algorithm can be applied to the systematic 
optimization of electrode channels or features in any 
neurological data. This technique can be applied as a one-
time selection of electrodes or features for a specific subject. 
Further analysis or online applications using the off-line 
selection will reduce computational complexity. 

IV. SUMMARY 
A first step in developing an algorithm for the systematic 

optimization of the number of EEG electrodes or features 
required for task discrimination in motor imageries for BCI 
applications is presented. Usefulness of the fully optimized 
technique for reliable selection of scalp electrodes is 
demonstrated. Future direction is provided to develop a 
reliable algorithm for application to any neurological data.  

 

              
               (a)                   (b) 
Fig. 1. Discrimination results for Subject 1 using stepwise and fully 
optimized techniques for left vs. right hand (LR) and tongue vs. toes (TT) 
movement imagery tasks and Laplacian electrode channels. (a) 
Classification errors and (b) Number of electrodes selected. “Step” = 
stepwise, and “Optim” = systematic optimization.  
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             (a)                  (b) 

               
                (c)                  (d) 
Fig. 2. Number of electrodes selected out of 9 Laplacian electrodes using 
stepwise and systematic optimization techniques for left vs. right hand and 
tongue vs. toes movements. (a) Subject 2, (b) Subject 3, (c) for Subject 4, 
and (d) Subject 5. “Step”= stepwise and “Optim”= systematic optimization. 
 

TABLE I 
Two-way multivariate analysis of variance (MANOVA) with 95% 

confidence limit. df = degrees of freedom, P = probability. 
 

Factor Levels Variables Λ 
(Wilks’ 
lambda) 

χ2 df P> χ2 

Electrode 
selection 

2 2 0.6256 10.8 2 0.0045 

Data 
transform 

3 2 0.8478 3.88 4 0.4225 

Electrode 
selection 
* Data 
transform 

6  2 0.9557 1.07 4 0.9 
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