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Abstract— In this paper, we propose two methods to quan-
titatively analyze the motor skill in sports. The first method
is the dimensionality reduction using the principal component
analysis (PCA). The motion data, e.g. the joint angles (143-
dimensional vector) or the muscle tensions (989-dimensional
vector), are projected to a lower dimensional space that well
represents the characteristics of original data. The similarities
and differences become clear by observing the data in the low-
dimensional space. The second method utilizes the joint stiffness
obtained from joint kinematics and a biological muscle model.
Though muscle tension data contain richer information than
joint angle data, the dimension is so high that simply applying
PCA does not give useful insights. Here we calculate the joint
stiffness using the muscle tension data and a biological muscle
model. This information represents the muscle usage skill which
can not be observed only from motion data, and reflects the
redundancy of the muscle tensions. We demonstrate the two
methods by analyzing skilled performers’ motions.

Keywords: Musculoskeletal Model, Skill of Sports, Principal Com-

ponent Analysis, Biological Muscle Model.

I. INTRODUCTION

Compact representation of high-dimensional human mo-

tion is crucial for intuitively and quantitatively evaluating

motion patterns in sports. Ohtsuki et al. developed quanti-

tative measures for evaluating sports motion such as skill-

fulness [1]. Sakurai et al. investigated the characteristics

of muscle function and performance accuracy of skilled

and unskilled players in badminton smash stroke [2]. They

measured the EMG of arm, forearm, and shoulder muscles,

and concluded that the difference of EMG pattern is the

reason for the accuracy in skilled players’ motions. Hi-

rashima et al. used a three-dimensional analysis technique

to characterize overarm throws by focusing on how each

joint angular acceleration is produced by the muscle torques,

gravity torques, and velocity-dependent torques [3]. The

throwing motion of a skilled baseball player was measured

at three different speeds, and their dynamics was analyzed

by “nonorthogonal torque decomposition” that can clarify

how angular acceleration about a joint coordinate axis is

generated by the muscle, gravity, and interaction torques.

They showed that skilled ball throwers adopt a hierarchical

control in which the proximal muscle torques create a

dynamic foundation for the entire limb motion and resulting

interaction torques contribute to distal joint rotation. The

techniques mentioned above assume the knowledge about
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the characteristics of each movement to be evaluated. For

most people, however, it is difficult to know how to improve

their movements only by looking at those of skilled players.

There are mainly two parameters that can be measured

or computed from motion patterns of sports using muscu-

loskeletal models [4], [5]: joint angles and muscle tensions.

Here we propose two methods to analyze these data. The

first method is principal component analysis (PCA), which is

often used to reduce the dimension of high-dimensional data

and extract its characteristics. Joint angle and muscle tension

data are projected to a lower dimensional space that well

represents the characteristics of original data. Similarities and

differences of motions become clear by observing the data

in such low-dimensional space.

Although dimensionality reduction based on PCA turned

out to be effective for analyzing joint angle data, the di-

mension of muscle tension data is high and its singular

values do not decrease dramatically unlike joint angle data.

Therefore simply applying PCA does not give useful insights

for the analysis of muscle tension data. The optimization

using quadratic programming and EMG data can estimate the

muscle tension pattern including the redundant antagonistic

muscle that can be important for skilled sports performances.

The stiffness of joint is considered as the low-dimensional

representation of muscle tensions. This represents the redun-

dant information of muscle usage in the dimension equal to

the skeleton model’s degrees of freedom (DOF). This param-

eter is computed based on a biological muscle model [6], [7]

and the musculoskeletal model geometry.

This paper is organized as follows. In Section II, we

characterize the motor skill using PCA. The skilled boxers

performances are analyzed by the proposed method, and the

similarity and difference are clarified. The method to analyze

the muscle tensions by joint stiffness estimated using the

musculoskeletal model and a biological muscle model is

shown in Section III, followed by the concluding remarks.

II. PCA CHARACTERIZATION OF MOTOR SKILL

There are mainly two parameters that can be measured

or computed from motion patterns of sports using muscu-

loskeletal models [4], [5]: joint angles and muscle tensions.

In this section, these data are analyzed using principal

component analysis (PCA), which is often used to reduce

the dimension of high-dimensional data and extract its char-

acteristics. We use two skilled boxers’ punch motions (Fig.

1) as an example.

A whole-body motion with T frames is measured using

an optical motion capture system with 35 markers, and the
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Fig. 1. The snapshots of punch motion. Top: Subject A, bottom: Subject B.

inverse kinematics computation based on a nDOF (= 143)-
DOF skeleton model calculates the joint angle data θ(∈
RnDOF×T ). In this paper, the joint angle is represented using

the ZYX-Euler angles. Then the inverse dynamics is carried

out to calculate the generalized force data τG(∈ RnDOF×T ),
and we estimate the tensions of nmuscle(= 989) muscles

f(∈ Rnmuscle×T ) using a biological muscle model and

optimization.

Figure 2 represents the singular values of θ and f of

each subject sorted in the descending order. The horizontal

axis represents the index normalized by the dimension of

data (nDOF or nmuscle), and the vertical axis represents the

singular values. The red line represents Subject A, the blue

line represents Subject B, and the dashed line represents the

singular value of joint angles, the solid line represents the

singular value of muscle tensions. Though the singular values

of joint angles decease dramatically at 34 % of the total DOF

( = 49-th singular value), those of muscle tensions decrease

slowly. The third singular value of joint angles is about

10−4, so the first three principal components are enough to

represent the characteristics of joint angle data. For muscle

tension data, on the other hand, their singular values do not

decrease dramatically, and simply applying PCA does not

give useful insights.

Fig. 3 represents the projection of θA and θB , the joint

angle data of Subject A and Subject B in the motion shown

in Fig. 1, to the first three principal axes of [θAθB ]. This

parameter is computed via singular value decomposition as

follows:

[θAθB ] = UΣ

[

V T
A

V T
B

]

(1)

where the matrices U , Σ, and V T have the following

Fig. 2. The singular values of the whole-body joint angles and muscle
tensions. Red line: subject A, blue line: Subject B. Dashed line: singular
value of joint angles, solid line: singular values of muscle tensions.

properties:

1) the (i, j) element of U represents the contributing rate

of the j-th principal component to the i-th DOF.

2) Σ is a diagonal matrix and its (i, i) element represents

the i-th singular value. This value represents how the

i-th principal component is dominant in the motion.

3) the i-th row of V T represents the i-th principal com-

ponent that is the i-th dominant wave pattern in the

motion.

The top and bottom graphs of Fig. 3 represent the projection

onto the first and second and the first and third principal

axes respectively. The red line represents Subject A, and the

blue line represents Subject B. The circle mark represents 0

sec, and the cross marks are placed every 0.05 sec. These

graphs show that the second principal component represents
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Fig. 3. The principal components of the whole-body joint angles. Both
subjects’ data are projected to the same low-dimensional space. Red line:
Subject A, blue line: Subject B. Top: 1st and 2nd principal components,
bottom: 1st and 3rd principal components. Circle marks: 0 sec, cross marks:
every 0.05 sec.

the difference between the subjects well. Then we check

the column of U that represents the relationship between

each principal component and joint. The second principal

component has a high correlation with the left articulatio

coxae angle and the twisting angle of body trunk. The anal-

ysis of motion data (raw video data) indicates that Subject

A punches only with the upper arm and forearm using the

vertical center-of-mass (COM) movement, while Subject B

punches with the anteroposterior COM movement by the

articulation coxae movement and the twist of upper body.

Figure 4 represents the trajectory of COM during the punch

motion. The horizontal axis represents the anteroposterior

and the vertical axis represents the vertical position of COM.

The red line is Subject A, and the blue line is Subject B. The

movement of COM corresponds to what is observed in the

raw video. This result indicates that PCA of joint angle data

can represent the difference of skilled performance.

The good number of PCA is three for an easy analysis

because we can intuitively figure out three dimensional

trajectory. And derived difference of performance can be

presented as follows. If Subject A is a professional and B

is a beginner, and j-th principle component represents the

difference significantly, the difference between subject A and

Fig. 4. The COM trajectory during the punch motion. Red line: Subject
A, blue line: Subject B. Circle marks: 0 sec, cross marks: every 0.05 sec.

B projected to the j-th principle component is:

δθA−B = UΣj(V
T
A − V T

B) (2)

where δθA−B represents the difference, and Σj is the matrix

whose (j, j) element represents the j-th singular value. By

showing the motions whose joint angle data are θB and

θB + δθA−B , Subject B can grasp the difference between a

professional player and himself.

III. JOINT STIFFNESS ANALYSIS

In this section, we show a method to analyze the muscle

tension using a musculoskeletal model that represents the

geometry and dynamics of human body, and a biological

muscle model that represents the dynamics property of

muscle. This data contains much richer information than

what we would obtain only from motion data. Especially,

the activity of antagonistic muscle can not be estimated only

from motion data, but it is important for the performance

because it determines the fleetness and fineness.

As shown in the previous section, however, PCA of muscle

tension data cannot effectively reduce the dimension. We

therefore propose an alternative where we convert muscle

tensions to joint stiffness based on a musculoskeletal model

and a biological muscle model. This method can reduce the

dimension to the number of joints in the skeleton model,

while preserving the antagonistic muscle activity informa-

tion.

The joint stiffness is represented as the relationship be-

tween the small variations of joint torque and joint angle.

First, the relationship between joint torque and muscle ten-

sion is written as follows:

τ = JT (θ)f (3)

where J = ∂l/∂θ is the posture-dependent Jacobian matrix

of muscle lengths with respect to joint angles. l(∈ Rnmuscle)
is the muscle lengths and τ (∈ RnDOF) is the joint torques.

We also consider a biological muscle model [6], [7] that rep-

resents the muscle tension as a function of muscle length, its
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velocity and activity. The k-th muscle tension is represented

as follows:

fk = −akFl(lk)Fv(l̇k)Fmax k (4)

where ak, lk, l̇k and Fmax k are the activity, length, its

velocity, and maximum isometric force of muscle k respec-

tively, and Fl(∗) and Fv(∗) are the functions that represent

the tension-length and tension-velocity relationships. The

relationship between the joint torque variation and the angle

velocity can be written in the following equation:

∂τ

∂θ
=

∂JT

∂θ
f + JT ∂f

∂θ

=
∂JT

∂θ
f + JT ∂f

∂l
J (5)

where the first term of the right side represents the change of

joint torque caused by the posture change with the constant

muscle tension, and the second term represents the change

of joint torque caused by the muscle dynamics properties.

Here we consider the joint stiffness caused by the elasticity

of muscle represented by the second term, and assume that

ak, Fv(∗), and Fmax k are constant. Fl(∗) is represented as

follows [6], [7]:

Fl(lk) = exp{−

(

lk − l0k

Kl

)2

} (6)

where l0k is the original length of the k-th muscle, and Kl is

a constant whose value is shown in [7]. We can then compute

∂fk/∂lk as follows:

∂fk

∂lk
= −2

lk − l0k

K2

l

fk (7)

The top and bottom graphs of Fig. 5 represent the stiffness

of right elbow and the speed of right hand during a punch

motion respectively. In both graphs, the horizontal axis

represents the time [sec]. The vertical axis represents the

joint stiffness [Nm/rad] and the speed of right hand [m/sec]

in the bottom graph. The solid line represents Subject A, the

dashed line represents Subject B, the red line represents the

joint stiffness around the flexion / extension axis, the green

line represents around the abduction / adduction axis, and

the blue line represents around the external / internal rotation

axis. Note that lower value indicates stronger stiffness. This

result shows that Subject B’s right elbow is stiffer than that

of Subject A during the punch motion. The characteristics

of punch motions are: Subject A uses the flexibility of body,

and Subject B rigidizes his own body and moves linearly.

These characteristics agree with this joint stiffness parameter.

The stiffness of joint increases the robustness against sudden

external forces, but reduces the rapidity of punch motion.

Stiffness and rapidity are trade-off and we do not know which

is important, but this result of joint stiffness correspond to

the observed punch speed.

IV. CONCLUSION

In this paper, we proposed two methods using PCA and

joint stiffness to quantitatively analyze the motor skill, and

showed the following points.

Fig. 5. Joint stiffness around right elbow during punch motion. Solid line:
Subject A, dashed line: Subject B. Top: joint stiffness, bottom: right hand
speed. Red line: stiffness around flexion/extension axis, green line: around
abduction/adduction axis, blue line: external/internal rotation axis.

1) The dimensionality reduction based on PCA is effec-

tive for characterizing joint angle data.

2) Simply applying PCA did not give insights for an-

alyzing muscle tension data because of its high-

dimensionality.

3) Joint stiffness can be used as an alternative to PCA

because its dimension is the same as the number of

joints of the skeleton model, while it also preserves

the antagonistic muscle activity information.

4) The proposed method can be used to evaluate and

improve the sports performance automatically if the

other techniques, e.g. clustering or recognition using

HMM, are implemented.
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