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Abstract— In this paper, we propose a method for realtime
estimation of whole-body muscle tensions. The main problem
of muscle tension estimation is that there are infinite number
of solutions to realize a particular joint torque due to the
actuation redundancy. Numerical optimization techniques, e.g.
quadratic programming, are often employed to obtain a unique
solution, but they are usually computationally expensive. For
example, our implementation of quadratic programming takes
about 0.17 sec per frame on the musculoskeletal model with
274 elements, which is far from realtime computation. Here, we
propose to reduce the computational cost by using EMG data
and by reducing the number of unknowns in the optimization.
First, we compute the tensions of muscles with surface EMG
data based on a biological muscle data, which is a very
efficient process. We also assume that their synergists have the
same activity levels and compute their tensions with the same
model. Tensions of the remaining muscles are then computed
using quadratic programming, but the number of unknowns
is significantly reduced by assuming that the muscles in the
same heteronymous group have the same activity level. The
proposed method realizes realtime estimation and visualization
of the whole-body muscle tensions that can be applied to sports
training and rehabilitation.

Keywords: Estimation of Muscle Tension, Hill-Stroeve’s Muscle

Model, Quadratic Programming, Heteronymous Grouping.

I. INTRODUCTION

Bio-feedback is a training technique often used in sports

and rehabilitation where people are taught to improve their

health and performance by using signals from their own

bodies as feedback. Giving the feedback as fast as possible,

or ideally in realtime, is important for effective training.

The objective of this work is to provide the muscle tension

information in realtime for bio-feedback applications.

A number of algorithms have been proposed for estimating

muscle tensions and joint loads using musculoskeletal mod-

els [1], [2], [3], [4]. The main problem of muscle tension

estimation is that there are infinite number of solution to re-

alize a particular joint torque due to the actuation redundancy

(much more muscles than necessary to drive the skeleton).

It is therefore impossible to obtain precise muscle tension

information only from motion data. One of the solution is

to use inverse dynamics algorithms developed in robotics

to obtain the joint torques of the skeleton and then run

numerical optimization to compute the muscle tensions [2],
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[4]. This approach does not require EMG data, and also

physically correct at least if the skeleton model parameters,

which are easier to identify than muscle model parameters,

are correct. However, a problem is that the result relies

entirely on the optimization criteria that may not reflex the

real muscle tension pattern. And all of these algorithms are

too computationally expensive.

We proposed the new algorithm to speed-up the com-

putation for the whole-body muscle tension estimation [5].

First, the tension of some muscles is computed directly by

measuring muscle activation by electromyogram (EMG) and

using empirical muscle models to convert the activations to

tensions [6], [7]. It is very fast because we only need to run

the muscle model. The method can, however, only estimate

the tensions of muscles with EMG information, which are

strictly limited by the number of available EMG channels.

For the remaining muscles, their tensions are computed using

the inverse dynamics computation and the singularity-robust

inverse (SR-inverse). However, the method does not consider

the inequality constraint that muscles can only pull.

In this paper, we propose to reduce the computational

cost by using EMG data and by reducing the number of

unknowns in the optimization. First, we compute the tensions

of muscles with surface EMG data based on a biological

muscle data, which is a very efficient process. We also

assume that their synergists have the same activity levels

and compute their tensions with the same model. Tensions

of the remaining muscles are then computed using quadratic

programming, but the number of unknowns is significantly

reduced by assuming that the muscles in the same het-

eronymous group have the same activity level. The proposed

method realizes realtime estimation and visualization of the

whole-body muscle tensions that can be applied to sports

training and rehabilitation.

This paper is organized as follows. In Section II, the

existing method to estimate the muscle tension using the

inverse dynamics computation and optimization is shown.

The heteronymous grouping of muscle is shown in Section

III, and used to estimate the appropriate muscle tensions in

high speed. We finally conclude the paper in section IV.

II. OPTIMIZATION-BASED MUSCLE TENSION

ESTIMATION

In this section, we review the basic equations of

optimization-based methods for muscle tension estimation

and show that they are too slow for realtime applications.

In general, the relationship between muscle tensions f and

equivalent joint torques τG is described by the following
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equation [4]:

τG = JT f (1)

where J is the posture-dependent Jacobian matrix of muscle

lengths with respect to joint angles. If we know the joint

angles, velocities, and accelerations, we can compute the

joint torques τG by applying inverse dynamics algorithms

such as [8] and subtracting the effect of external forces

including ground contact forces. Estimating muscle tensions

then becomes the problem of finding a solution of linear

equation (1). Unfortunately, we cannot solve Eq. (1) directly

because of two reasons: 1) the equation is usually under-

constrained, meaning that there may be infinite number of

solutions, and 2) muscles can only pull, which imposes the

inequality constraint f ≤ 0. An approach used in some

papers is to form an optimization problem where the cost

function can be linear [2], [4], [9], or quadratic [4]. Here

we implement the quadratic version of [4] and measured its

computation time for two models. The cost function:

Z =
1

2
|τG − JT f |2 +

k

2
|f − f∗|2 (2)

is to be minimized subject to the following constraint:

f ≤ 0 (3)

where k > 0 is a constant weight and f∗ is a reference

muscle tension, which can simply be set to zero to obtain

least-square solution [4] or determined from EMG data [9].

We applied this algorithm to two models and measured

the computation time. The first model is built for detailed

analysis and comprises almost 1000 muscles including the

trunk part. The second model is a simplified version fo-

cused on the limb movements, although it still contains

274 muscles. They share the same skeleton model with 155

degrees of freedom (DOF). The typical computation time

for estimating the muscle tensions were around 1.7 s and

0.17 s for the first and second models respectively using

a workstation with an Intel Xeon 3.33GHz processor. The

frame rate would be under 6 fps even with the simplified

model and excluding the rendering time, which is far too

slow for realtime visualization.

III. HETERONYMOUS MUSCLE GROUPING FOR

OPTIMIZATION

We proposed an algorithm to speed up the estimation of

muscle tension for realtime applications [5]. The algorithm

comprises the following two steps:

1) The tensions of muscles whose EMG are directly

measured (MEMG) are computed using an empirical

muscle model [6], [7].

2) The tensions of remaining muscles are computed using

the inverse dynamics computation and the singularity-

robust inverse. First, the inverse dynamics computes

the joint torque τG. We also compute the joint torque

τEMG equivalent to the tensions obtained in step 1).

The residual torque τ ′

G = τG − τEMG is the torque

that should be realized by the remaining muscles.

We apply the SR-inverse to compute the tensions of

remaining muscles.

This method does not consider the inequality constraint

(Eq. (3)). Complete optimization considering the inequality

constraints is computationally expensive as shown in Section

II.

The computational cost of quadratic programming is pro-

portional to the square of number of unknowns. Therefore,

the reduction of the number of unknowns would be effec-

tive for reducing the computational cost. In this paper, we

propose a method of reducing the number of unknowns

by grouping the remaining muscles into the heteronymous

muscle groups.

There are the facilitatory and inhibitory nerve connections

between muscles. If the muscles are connected facilitatory

they work as synergist, and if inhibitory work as antagonist.

The muscle group of the former is called the heteronymous

muscle group, and the functional significances of the muscles

in this group are similar. The relationship between activations

of muscle in such group can be assumed to follow some

rule [10], [11], [12]. For example, the muscle activation pat-

tern has been suggested to be determined so as to minimize

the sum of the muscle force, squared, or cubed [13], [14],

[15], [16]. Based on this knowledge, we can predefine some

constraints between the activities of muscle in heteronymous

muscle group, and this will reduce the number of unknowns

of the musculoskeletal model. In the subsequent paragraphs,

we show a method for grouping the whole-body muscles

into the heteronymous groups, and using them to speed up

the estimation of muscle tensions with optimization.

In this paper, we follow the method shown in [5], and

propose the optimization method instead of using the SR-

inverse. First, the whole-body 274 muscles are divided into

36 heteronymous muscle groups by considering the limb and

trunk motion and rotation axes for each side. Members of

each group, Mi(i = 1, 2, . . . , 36), are further divided into

the following three sets:

1) MiEMG: The representative muscle of the group,

whose EMG signal is measured. Not all the group has

this representative muscle because there are restraint

of the EMG channel number.

2) Mihigh: The muscles that should have the same activa-

tion as the representative muscle of the group (Only if

i-th group has the representative muscle). Here, only

the muscles whose original and end points are same

as the representative muscle are included in this set

to consider the problem of multi-joint and single-joint

muscle problem.

3) Milow: The muscles that are included in non of

the above 2 sets. They may be further divided into

subsets (Mi,1low, . . .Mi,nilow) depending on the pair

of bone they connect, where ni represents the number

of heteronymous groups in Mi.

We also define new sets of muscles MEMG, Mhigh, and

Mlow by MEMG = M1EMG ∪M2EMG ∪ . . .∪M36EMG

and so forth. The number of muscles included in each
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group is shown in Table I, and the detail of the groups

of leg muscles is shown in Table II. In the groups with

representative muscle, the first row in each group is Mhigh,

other rows are Mlow.

The algorithm for the speed-up of the whole-body muscle

tension estimation comprises the following two steps:

1) Compute the tensions of muscles in MEMG and

Mhigh using the EMG data of the representative

muscles and a physiological muscle model [6], [7].

2) Estimate the tensions of remaining muscles (Mlow)

using inverse dynamics and an efficient optimization

algorithm.

The following paragraphs describe the second step in detail.

TABLE I

NUMBER OF MUSCLES IN EACH MUSCLE GROUP.

group number

MEMG 16
Mhigh 20
Mlow 238

total elements 274

The relation between the joint torque and the muscle

tensions are written as follows:

τG =
[

JT
EMGJT

highJT
low

]





fEMG

fhigh

f low



 (4)

where JEMG, Jhigh, and J low respectively represents the

Jacobian matrix of the length of muscles in MEMG, Mhigh,

and Mlow with respect to the joint angles, and fEMG,

fhigh, and f low are the tensions of muscles in each set.

Since we have already computed fEMG and fhigh, we can

move them to the left-hand side as

τ ′

G = JT
lowf low (5)

In order to reduce the number of unknowns, we assume that

the muscles in the same heteronymous group have the same

activity level. The muscles connected facilitatory work as

synergist, so the activities of these muscles will follow a

function Ei,m→n that represents the relationship of muscle

activities between the m-th and n-th muscle in Mi,jlow.

This function determines the variability of muscle tensions

among the synergist group. One of the methods to determine

this function is to measure the EMG of all the muscles

in the synergist group, but this is impossible because of

the number of electrodes required for the electromyograph.

Another approach is to apply optimization techniques [13],

[15], [16]. In our implementation, we use a simple identity

mapping called the muscle equivalent model [17]:

Ei,j→k(ai,j) = ei,j→k(lk, l̇k)ai,j . (6)

The empirical muscle model proposed by [6], [7] can be

written in the following equation:

f∗

k = −Ei,j→k(ai,j)Fl(lk)Fv(l̇k)Fmax k

= −ei,j→k(lk, l̇k)ai,jFl(lk)Fv(l̇k)Fmax k. (7)

In Eq. (7), Fl(lk), Fv(l̇k), and Fmax k are computed by

the inverse kinematics computation with the musculoskeletal

model, so we can divide the constant term and the variable

term for the muscle k as follows:

JT
k fk =

[

−ei,j→k(lk, l̇k)Fl(lk)Fv(l̇k)Fmax kJT
k

]

ai,j

= HT
k ai,j (8)

Eq. (5) can be deformed as follows:

fi
′
G =





∑

k∈M1,1low

H
T
k . . .

∑

k∈Mng,nng low

H
T
k









a1,1

.

.

.
ang,nng





= H
T

A. (9)

The cost function of the optimization (Eq. (2)) can be written

as follows:

Z =
1

2
|τ ′

G − HT A|2 +
k

2
|A − A∗|2. (10)

Because Fl(∗) ≥ 0, Fv(∗) ≥ 0, and Fmax ≥ 0, the inequality

constraint of Eq. (3) can be written as:

A ≤ 0. (11)

By setting the number of groups a little bigger than the

DOF of the skeleton model, Eq. (10) can be minimized

subject to the inequality constraint Eq. (11) using quadratic

programming. The heteronymous grouping in this paper

divide the whole-body muscles into 56 groups, and the

DOF of musculoskeletal model is 54. The proposed method

is capable of estimating the tensions of whole-body 274

muscles from motion capture and 16-channel EMG data in

only 16 msec per frame, though the existing method takes

170 msec.

IV. CONCLUSION

In this paper, we proposed a method to speed-up the

whole-body muscle tension estimation by reducing the num-

ber of unknowns of musculoskeletal model. The key idea

of the algorithm is to divide the muscles into heteronymous

groups based on their neuronal binding and the kinematical

original/end point, and decrease the number of unknowns

of musculoskeletal model. The synchronized EMG onsets

and patterns of elbow and shoulder flexor muscles (Posterior

Deltoid, Intermediate Deltoid and Brachialis, Brachioradi-

alis) were observed in [10], and our algorithm agrees with

this observation in that it divides the elbow and shoulder

flexor/extensor muscles into heteronymous groups and opti-

mizes activities of muscles in same group to become equal.

The proposed method realize the estimation and visualization

of the whole-body muscle tensions in realtime. Figure 1

shows one result in which the rendered musculoskeletal

model with muscle tension information estimated in realtime

is overlaid on top of the image captured by a standard video

camera. Possible applications include interface for assisting

training and rehabilitation.
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TABLE II

JOINT ROTATIONS AND ASSOCIATED MUSCLE GROUPS.

# joint rotation representative muscle muscles in group # of muscles

10 hip flexion Rectus Femoris Sartorius, Grachilis 3
knee extension Iliacus, Pectineus, Adductor Longus, Adductor Bre-

vis, Adductor Magnus, Tensor Fasciae Latae
7

Vastus Lateralis, Vastus Medialis, Vastus Intermedius 3

11 hip extension Biceps Femoris CaputLongum Semitendinosus, Semimembranosus 3
knee flexion Gluteus Maximus Os Coccygis, Gluteus Maximus

Crista Iliaca, Gluteus Maximus Os Sacrum, Gluteus
Medius, Gluteus Minimus

7

Biceps Femoris Caput Breve 1

12 hip external rotation Piriformis, Obturatorius Internus, Gemellus Superior,
Gemellus Inferior, Quadratus Femoris, Obturatorius
Externus

6

13 ankle dorsal Tibialis Anterior Extensor Hallucis Longus, Peroneus Tertius 3

14 ankle plantal Gastrocnemius Popliteus 2
Soleus 1
Plantaris 1
Flexor Hallucis Longus, Tibialis Posterior, Peroneus
Longus, Peroneus Brevis

4

15 foot flexion InterosseiDorsales 2
Extensor Digitorum Brevis, Abductor Hallucis,
Flexor Digitorum Brevis, Abductor Digiti Minimi,
Lumbericales, Flexor Hallucis Brevis, Flexor Digiti
Minimi Brevis, Interossei Plantares

13

Fig. 1. Images of realtime estimation and visualization of the muscle tensions. The rendered musculoskeletal model with estimated muscle tension
information is overlaid on top of the image captured by a standard video camera.
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