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Abstract—In this study a novel method for tracking and
separation of event-related potential (ERP) subcomponents from
trial to trial is considered. The sources of ERP subcomponents
are assumed to be electric current dipoles (ECD). The shape
of each ERP subcomponent is also supposed to be monophasic
wave and modeled using a Gaussian waveform. We are interested
in the estimation and tracking of ERP subcomponent locations
and parameters (amplitude, latency and width of each Gaussian
waveform). Estimation of ECD locations, which have nonlinear
relation to the measurement, is performed by particle filtering,
and estimation of the amplitude is optimally estimated by a
maximum likelihood approach, and finally estimation of latency
and width of the Gaussian functions are given by Newton-
Raphson technique. New recursive methods are introduced for
both maximum likelihood and Newton-Raphson approaches to
prevent the divergence of the filtering in the presence of very low
signal to noise ratio (SNR). The proposed method was assessed
using both simulated and real data and the results verified a
successful deployment of the method in ERP analysis.

Index Terms—Event-related potentials, maximum likelihood
estimation, Newton-Raphson technique, particle filtering.

I. INTRODUCTION

Event-related potentials (ERPs) with excellent temporal

resolution are one of a number of physiological measures

of brain activity [1]. Conventional methods for analyzing

ERPs involve time-locked averaging over many trials. These

approaches assume that the ERP parameters remain the same

over time and the background EEG is a random process which

is attenuated by averaging. While these procedures are widely

employed in the psychological community, there is evidence

that ERPs vary over time due to the changes in the degree of

fatigue, habituation, or levels of attention [2].

Recent methods have been proposed to exploit spatiotem-

poral information of the ERP data from trial to trial (e.g.

[3], [4]). The main drawback of these spatiotemporal methods

is that the source locations are assumed to remain the same

during the course of recording.

In this study we propose a novel method for separation of

ERP subcomponents. ERPs are assumed to be superposition

of some electric current dipoles (ECD) and their shapes are

assumed to be monophasic waves and modeled by Gaussian

waveforms. Amplitude, mean, and variance of each Gaussian

waveform can be interpreted as amplitude, latency, and width

of ERP subcomponents, respectively. The locations are esti-

mated using particle filtering (PF). Many studies have proved

that PF is one of the best methods when the relation between
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the desired parameter (states) and measurement is nonlin-

ear [5]. A closed-form solution for the amplitude is given using

maximum likelihood approach. The solutions to the latency

and width are given by maximum Likelihood method which

is solved by Newton-Raphson technique. Very low SNR of

some individual trials results in the divergence of filtering for

estimation of amplitude, latency and width of the Gaussian

waveforms. To compensate this failure, recursive methods are

introduced which guarantee stability of the filtering across

trials.

II. METHODS

In this section first the ERP modeling is presented and then

recursive solutions to the estimation of model parameters are

given.

A. Problem Formulation

Let the measured ERP Yk ∈ RL×T be a matrix composed
of the potentials acquired from L electrodes with T time
samples at kth trial. In addition, suppose ERP is generated
from q ECDs which are specified by their three dimensional
locations ρi

k, i ∈ {1, . . . , q} at kth trial. The medium between
the sources and the electrodes is assumed to be homogenous
and the potentials at the scalp Yk be the superposition of the
potentials from ECDs. Therefore we may write

Yk =

q
∑

i=1

H(ρi
k)ai

kψ
i
k + Nk (1)

where H ∈ RL×3 is the forward matrix and is a nonlinear
function of the ECD locations. H can be calculated in a
spherical head model with three skull, scalp, and skin layers, or
can be obtained using a realistic head model. In latter case, for
each location a pre-calculated forward matrix H is given. Nk

represent the Gaussian white noise (GWN) which is spatially
and temporally uncorrelated with the source activities. In
equation (1), a

i
k ∈ R

3×1 is the amplitude of the ith ECD

moment in x, y, and z directions, and ψi
k = [ψ(1)i

k . . . ψ(T )i
k]

represents the shape of the ith ECD moment. Each ψ(t) is
modeled using a Gaussian waveform as:

ψ(t)i
k =

1

σi
k

√
2π

e
−

(t−µi
k
)2

2σi
k (2)

Note that we assume the ECD amplitudes are different in x,

y, and z directions, however, they have the same shape in

three directions (i.e. same σi
k and µi

k in three directions). For

simplicity and without loss of generality, we ignore the nor-

malizing factor 1
σi

k

√
2π

and assume that it is embedded in the

amplitude vector a
i
k. Although the real ERP subcomponents
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do not have an exact shape of Gaussian functions, this mod-

eling allows a robust and fast estimation of peak parameters

(latency and amplitude) with which the neurophysiologists are

primarily concerned.

Our primary aim here is to recursively estimate the model

parameters θi
k = {ρi

k,ai
k, µi

k, σi
k}, i ∈ {1, . . . , q} at the kth

trial based on the previous estimation of model parameters

θ̂i
k−1 and available measurements Yk. Therefore, we assume

that the evolution of the parameters is a Marokovian process

and dose not vary extensively from trial to trial. This assump-

tion has been exploited in many ERP analysis (e.g. [4], [6]). It

can be also explicitly justified by Mocks, et al. observation [7]

that consecutive responses from repeated stimuli vary slowly,

since the brain state changes gradually over time. Although the

responses across the entire experiment can differ significantly.
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Fig. 1. An example of estimated amplitude, mean and variance of two ERP
subcomponents using simulated data with SNR = -5dB, (a) amplitude, (b)
mean, (c) variance.
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Fig. 2. Estimated location using the proposed method for the previous figure
in (a) axial and (b) sagittal views.

B. Parameter Estimation

1) Estimation of Source Locations: Let the matrix of ECD
locations be Rk = [ρ1

k . . . ρ
q
k] ∈ R3×q. The source locations

Rk have nonlinear relation through forward matrix H to

the measurements and if the real head model is used, no
exact closed-form solution for H exists. PF is an emerging
methodology which can deal with nonlinearity of the system
and non-Gaussianity of the posteriori distribution p(Rk|Y1:k).
In PF the posteriori distribution is approximated by discrete

random measures defined by particles {R
(n)
k , n = 1, . . . , N}

and their associated weights {w
(n)
k , n = 1, . . . , N}. The

posteriori distribution based on these particles and weights is
approximated as

p(Rk|Y1:k) ≈
N

∑

n=1

w
(n)
k δ(Rk − R

(n)
k ) (3)

where δ(.) is Dirac delta function. Suppose at trial k we want
to approximate the posteriori distribution p(Rk|Y1:k) subject
to having p(Rk−1|Y1:k−1). Then given the discrete random

measure {R
(n)
k−1, w

(n)
k−1; n = 1, . . . , N} and the observation

Yk we want to approximate {w
(n)
k ; n = 1, . . . , N}. Using

Bayes’ rule and concept of importance sampling, the new
weights are updated as follow [8]

w
(n)
k ∝ w

(n)
k−1

p(Yk|R(n)
k )p(R

(n)
k |R(n)

k−1)

π(R
(n)
k |R(n)

k−1,Y1:k)
(4)

where π(.) is the importance density. The choice of importance
density is one of the crucial issues in designing the PF. In gen-
eral, the closer the importance density to the actual posteriori
distribution, the better the approximation is. The most popular

choice of the importance density is π(Rk|R
(n)
k−1,Y1:k) =

p(Rk|R
(n)
k−1). This implies that equation (4) reduces to

w
(n)
k ∝ w

(n)
k−1p(Yk|R(n)

k ) (5)

where p(Yk|R
(n)
k ) is the likelihood function and is equiva-

lent to the noise distribution p(Nk) which has been already

assumed to be GWN.
2) Estimation of Source Amplitudes: In this section, we

derive a maximum likelihood estimator for ECD amplitudes
ai. It follows from (1) that the negative log-likelihood function
of the observed data samples is

f(θk;Yk) =

T
∑

t=1

[Yk −
q

∑

i=1

H(ρi
k)ai

kψ
i
k]T Q[Yk −

q
∑

i=1

H(ρi
k)ai

kψ
i
k]

+ ln(Q) + contant
(6)

By equating the gradient of the function f(θk;Yk) with
respect to parameter of interest ai to zero, estimations of the
amplitudes are given by

ǎ
i
k =

T
∑

t=1

H
†(ρi

k)[Yk −
q

∑

j=1,j 6=i

H(ρj
k)aj

kψ
j ]/ψi

k(t) (7)

where H
† = (HT

H)−1
H

T is the pseudo-inverse of H. The
likelihood monotonically increases at each iteration and there-
fore convergence of the above algorithm to a local maximum
is guaranteed. However, in the case of noisy individual trials
and inaccurate estimates of other parameters, the amplitude
may not be truly estimated. This may also cause divergence
of the method in some high noisy trials. To prevent this failure,
we assume that the evolution of the parameters are Markovian
and then we may write

â
i
k = â

i
k−1 + λa(ǎi

k − â
i
k−1) (8)
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where 0 < λa ≤ 1 is a forgetting factor. This recursive

equation prevents sudden changes of amplitude because of

some very low SNR of individual trials and by small enough

values of λa guarantees the stability of the filtering.

3) Estimation of ECD Shape Parameters: ECD shape

parameters include mean µi
k and variance σi

k of Gaussian

templates. In general, the optimization problem in (6) does

not appear to admit a closed-form solution similar to ampli-

tude for mean and variance. Here, we use Newton-Raphson

technique [9] to approximately solve this problem. Although

PF can again be employed to estimate the nonlinear parameters

µi
k and σi

k, PF requires extensive memory and computational

time. Moreover, choosing a proper initial point for Newton-

Raphson technique also can result in better estimation than the

PF method.
In Newton-Raphson technique the following formulation is

used to estimate the shape parameters γi
k ∈ {µi

k, σi
k} in each

iteration

γi
k+1 = γi

k − λγ

[

∂2f

∂γi2
k

]−1
∂f

∂γi
k

(9)

for the same reason as we mentioned in the previous section,

the forgetting factor 0 < λγ ≤ 1 is added to the original

Newton-Raphson formulation to guarantee the stability of the

filtering in the face of very low SNR. This equation needs

the first and second order gradients of log-likelihood function

f(θk;Yk) with respect to µi
k and σi

k. In the following, we

drop the superscript i for the sake of convenience. The first

and second order gradients have been calculated and simplified

as

∂f

∂µk

=
4

σ2
k

T
∑

t=1

(µk − t)ψk(t)αT
k (Yk − Ψ) (10)

∂2f

∂µ2
k

=
4

σ2
k

T
∑

t=1

(1 − 2

σ2
k

(µk − t)2)ψk(t)αT
k (Yk − Ψ)+

2

σ2
k

(µk − t)2ψk(t)2αT
k αk

(11)

∂f

∂σk

= − 4

σ3
k

T
∑

t=1

(µk − t)2ψk(t)αT
k (Yk − Ψ) (12)

∂2f

∂σ2
k

=
4

σ4
k

T
∑

t=1

(3 − 2

σ2
k

(µk − t)4)ψk(t)αT
k (Yk − Ψ)+

2

σ2
k

(µk − t)4ψk(t)2αT
k αk

(13)

where Ψ =
∑q

i=1 H(ρk)akψk and αk = H(ρk)ak. The

latencies and widths of the ERP subcomponents estimated

by the above formulation may not be the global minimums

and they depend on the true estimation of initial points. The

dependency of the results to the initial points is more sensi-

tive in Newton-Raphson method than the PF and maximum

likelihood methods employed for estimation of locations and

amplitudes. The initial points as we will explain in the results

section can be chosen according to the latency and width of

fitted Gaussian waveforms to the ensemble average over all

trials.
4) Overall Algorithm: The aim of overall algorithm is

to update the parameters recursively based on the available

measurements. The pseudo-code of the method has been

presented in Algorithm 1. In this method, each particle not

only holds a parameter for location R
(n)
k , but also holds

parameters for amplitude a
i(n)
k , variance σ

i(n)
k , and mean µ

i(n)
k

of the Gaussian waveforms. Moreover, in this algorithm we

assume that the initial points of the ECD locations are known.

Algorithm 1 Pseudo-code of the proposed method for tracking

of ERP subcomponent parameters

set k = 0 and generate random numbers R
(n)
0 according to

Gaussian distribution with mean in the known locations.
set µ

i(n)
0 and σ

i(n)
0 equal to the parameters of fitted Gaussian

functions to the average of ERPs over all trials.
for k = 1 to K do

- generate zero mean random noise w
(n)
k with a priori covari-

ance matrix Qw and set R
(n)
k = R

(n)
k + w

(n)
k .

- update new weights using w
(n)
k according to equation (5).

- normalize the weights w
(n)
k = w

(n)
k /

∑N

n=1 w
(n)
k .

- update a
i(n)
k given R

(n)
k , σ

i(n)
k and µ

i(n)
k and Yk for each

particle using equations (7) and (8).

- update σ
i(n)
k and µ

i(n)
k given a

i(n)
k , R

(n)
k and Yk for each

particle using equations (9)-(13).
- resample new N particles with replacement according to their

importance weights w
(n)
k [5].

end for

III. RESULTS

In this section, we apply the proposed method to synthetic

and real EEG data to demonstrate its application in an empir-

ical setting.

A. Simulated Data Results

We generate a set of EEG data containing ERP waves in

the interval between 200ms and 500ms post-stimulus. The

sampling frequency was set to 250Hz and the number of trials

was set to 60. Two moving sources one in frontal and one in

parietal sites were used for simulating ERP subcomponents.

The shape of ERP subcomponents assumed to be Gaussian

functions. The amplitude profile of the frontal source was

assumed to decrease linearly, but its latency and width as-

sumed to decrease linearly from trial to trial. The amplitude

profile of the second source were assumed to approximately

be constant, but its latency and width were assumed to

decrease linearly across trials. GWN with different level was

added to the amplitudes, the latencies and the widths of both

sources. Spatially uncorrelated Gaussian noise was added to

the simulated signals to achieve a realistic SNR levels of -5dB.

In this example values of λζ (ζ denotes a or γ) were set to

0.8. The simulated and estimated amplitude, latency and width

of frontal (red lines) and parietal (blue lines) sources has been

shown in Fig. 1. The simulated and estimated locations in

axial and sagittal views for the same data has been depicted

in Fig. 2. The algorithm exhibits acceptable performance in

such a low SNR environment.
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B. Real Data Results

Real data was obtained in an odd-ball paradigm in the Cardiff
University Brain Research Imaging Center (CUBRIC). Participants
heard in total 300 tones, 240 (80%) of which were frequent and 60
(20%) of which were infrequent. During acquisition, the frequency
bandwidth of the linear bandpass filter was 0.03-40Hz and the
sampling rate was 250Hz. An Fz (midline frontal) reference electrode
was employed. EEG data were recorded with 25 scalp electrodes. In
addition, horizonal an vertical electrooculogram were also recorded
to identify eye blinks and movements.

A 200 ms pre-stimulus interval was used for baseline correction.
Eye blinks were rejected using independent component analysis
(ICA) [10]. We are interested in P300 whose origin and number
of responsible sources is unknown. In some clinical literature for
example in schizophrenic investigation [11] P300 is assumed to be
specified by two sources in frontal and parietal sites. The P300
activity of the superior ECD corresponds mainly to the classical
P3a and that of the basal oriented ECD to P3b [11]. The number
of sources has extreme effect on the results. Increasing the number
of sources exponentially increases the number of particles. For
simplicity and better estimation, we assume only two sources exist.

Selecting the initial points is a crucial since it affects the behavior
and convergence of the filtering. The initial point of location is
assumed to be in frontal site for P3a and to be in parietal site for P3b.
The data is average re-referenced and segmented around the P300
component. Therefore, epochs from 200ms to 500ms time-locked to
stimulus onset for infrequent trials were extracted. To find the initial
point of amplitude, latency, and width of each subcomponent, we
assume that the locations are fixed and using the proposed method,
the parameters are estimated for ensemble average over 60 trials.
Since the average data suffers from less noise than single trial data,
all values of λζ were set to 1 and the algorithm was run until the
results do not change.

The results are shown in Fig. 3. The amplitudes are the absolute
value of the three dimensional source amplitude moments. These
figures show that amplitude of the P3b is more stable than that of P3a
in most trials. P3a amplitude is habituating from trial to trial while
P3b approximately is constant. The latency of p3b is less than that
of P3a (P3b occurs earlier than P3a) and also P3b latency is slightly
more consistent than P3a latency during trials. Moreover, the width
of P3b is larger and more stable than that of P3a. These observations
can demonstrate that P3b is a stronger subcomponent than P3a in
both amplitude and width. Fig. 4 depicts the location of P3a and P3b
in axial and sagittal views. Red markers in frontal site denote the
location of P3a and blue markers in parietal site denote the location
of P3b subcomponents. The locations of P3b in these subjects are
again more consistent than the location of P3a which is moving in
the frontal site.

IV. CONCLUSION

In this study a method for separation of ERP subcomponent
and tracking was proposed. A model based on ECD was given
and its parameters were estimated using PF, maximum likelihood
and Newton-Raphson techniques. In addition recursive methods for
maximum likelihood and Neton-Raphson techniques were proposed
to guarantee the stability of filtering in the case of very low SNRs.

Accurate extracting and tracking of single trial ERP has great ben-
efit in several contexts. For example, for ERP researchers interested in
using ERPs to isolate cognitive processes, the reliance on averaging
introduces an inevitable degree of caution when making inferences
about the onset times of processes. Caution is also necessary when
inferring whether peak amplitude differences between averaged ERPs
for different conditions do in fact reflect consistent peak amplitude
differences at the level of individual trials.
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Fig. 3. Estimated amplitude, mean and variance in real data for P3a and
P3b by red and blue lines respectively.
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Fig. 4. Estimated location of P3a and P3b using red and blue markers in
(a) axial and (b) sagittal views.
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