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Abstract— This paper examines whether an appropriate al-
gorithm, developed for use with neonatal data, could also be
used, without alteration, for the detection of seizures in adults
with epilepsy. The performance of a feature extraction and
SVM classifier system is evaluated on databases of 17 neonatal
patients and 15 adult patients. Mean ROC curve areas of 0.96
and 0.94 for neonatal and adult databases respectively show
that high accuracy can be achieved independent of age. It is
also shown that features contribute differently for neonatal and
adult data.

I. INTRODUCTION

Neonatal seizures and adult epileptic seizures are two areas

of biomedical signal processing which have undergone major

advances in recent years. With technological improvements

has come the ability to address seizure detection problems

with more advanced mathematical approaches.

The history of many neonatal seizure detection algorithms

begins with the exploration of seizure detection in adults.

There are a number of reasons for this. Adult EEG databases

are freely available on the internet [1], allowing many

groups to commence research in the area. Large databases of

neonatal seizure data are much more difficult to gain access

to. Furthermore, because the mature adult brain is better

developed than the neonatal brain, seizure events in adults are

accompanied by less complex waveforms than those found

in neonates.

Hence, most neonatal seizure detection systems originate

as adult seizure detection systems which are then altered

in an attempt to provide neonatal seizure detection [2]. In

this paper, it is investigated if high performance can be

achieved using an algorithm designed primarily for the more

complicated neonatal seizure detection problem, leading to a

system which can be used for accurate seizure detection in

both adults and neonates.

This paper will also examine the relative performance of

signal processing features on adult and neonatal EEG. A

feature set of 47 features is extracted from the adult and

neonatal EEG databases, including time, frequency, wavelet,

information theory and modeling methods. The performance

of the feature set will be discussed in relation to the datasets.

As far as the authors are aware, a direct comparison of

a seizure detection system on neonatal and adult datasets

has not been previously carried out. This paper aims to

examine some of the problems posed by age-independent

seizure detection.
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II. EEG DATA

A. Neonatal Dataset

A dataset of 17 neonates is used to assess the performance

of the seizure detection algorithm on neonatal EEG. The

database consists of a total of 267.9 hours of scalp recorded

EEG with 691 seizures with a mean duration of 4.67 minutes.

This database has been previously used in the development

and assessment of neonatal seizure detection algorithms [3],

[4].

B. Adult Dataset

A dataset of adult EEG from patients with epilepsy is

maintained and made publicly available by the University

of Freiburg [1]. It contains both seizure and non-seizure

intracranial recordings (only the seizure recordings used

here) for 21 patients with ages ranging from 13 to 50. 3

patients (1, 18 and 19) were not used in this test as their

recordings contained very short length activity (less than

10 seconds) annotated as seizure. Rather than being seizure

events, activity of less than 10 seconds in length is regarded

as being interictal discharge rather than seizure. Therefore,

the algorithm discussed here is designed to detect activity

of only 10 seconds in correspondence with this clinical

definition. 3 other patients (5, 8 and 10) were removed from

the test data because their is a large amount of artifact

or measurement inconsistency throughout their recordings.

Artifacts exist in some amount in all EEG recordings, caused

by external sources (equipment, electrical noise, human in-

teraction) or internal sources (muscles, eye blinks, heart). In

the 3 recordings listed above however, artifacts are seen on a

large scale through out the entire recording, with non-seizure,

repetitive waveforms (patient 5), eye movement (patient 8) or

large bursts and attenuation (patient 10). Figs. 1 and 2 show

examples from these recordings. Therefore, the reduced adult

database used consists of recordings from 15 patients totaling

132.7 hours. There are 62 seizures with a mean duration

of 1.88 minutes and standard deviation of 1.31 minutes.

Information regarding electrodes and seizure types for each

patient can be seen in [1] and [5].

III. DETECTION ALGORITHM

The seizure detection algorithm proposed in this paper

has been developed over a number of years in the signal

processing group in University College Cork. It consists of

a number of steps consisting primarily of feature extraction,

classification and post-processing stages. The algorithm is

described in more detail in [6] and will be only briefly

described here.
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Fig. 1. Repetitive oscillations seen here in the lower 3 channels, continue
throughout the EEG of patient 5.
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Fig. 2. Recording artifacts seen in the EEG of patient 10.

A. Feature Extraction

The EEG is first notch filtered at 50 Hz to remove line

noise. This is followed by downsampling the EEG to 32 Hz.

Each channel of EEG is windowed separately with a window

of 8 seconds in length with an overlap of 4 seconds. 47

features are then extracted from each of these epochs. More

details on these features can be found in [7] and [3]. Features

are grouped into 3 classes to later determine if feature types

are more dominant in any one age group. The 3 groups are

Spectral, Energy and Structural. When a feature overlaps two

groups, it is included in both of those groups. The features

are listed in Table I.

B. Classification

The Support Vector Machine (SVM) is a classification

method which transforms data to a higher dimensional space

where a complex classification problems can be solved with

linear discriminant functions. SVMs are based on using only

those training patterns that are near the decision surface

assuming they provide the most useful information for clas-

sification. The SVM system with Gaussian kernel used in

this work has been developed for neonatal seizure detection

in [6].

spectral edge frequency (80%, 90%, 95%)1

dominant spectral peak frequency1

singular value decomposition entropy3

variance of the first and second derivatives12

zeros crossings of the first and second derivatives1

Hjorth activity, mobility and complexity2

power in 2 Hz frequency bands (0− 2Hz, 1− 3Hz,. . .10− 12Hz)1

normalised power in 2 Hz bands1 AR model fit3

number of minima and maxima1 kurtosis3

RMS amplitude2 line length12 zero crossings1

nonlinear energy12 spectral power2 entropy3

wavelet coefficients1 spectral entropy13 Fisher info3

skewness3

TABLE I

THE FEATURES EXTRACTED FROM THE EEG DATA. 1=SPECTRAL,

2=ENERGY, 3=STRUCTURAL.

During training, each of extracted features is normalised

by subtracting the mean and dividing by the standard devia-

tion to ensure that each feature has equal prominence in the

model. The normalising parameters are stored in order that

the same normalisation routine can be applied to the testing

data.

For each model, 5-fold cross validation is applied on the

training data in order to find the optimum parameters for

each model. Once the parameters are chosen, they are used

to train the final model on all the training data.

C. Post-processing

In the testing stage, the trained model is used to classify

the features for each epoch of each channel. The output

of the SVM is a value indicating the confidence of the

decision; the higher the absolute value of the output, the

higher the distance of the testing point from the separating

hyper-plane and thus the higher the confidence that the model

has correctly classified that epoch. The confidences are then

post-processed to improve the seizure detection performance.

This post-processing consists of:

• Moving average filter: A moving average filter of length

15 is applied to the classifier confidences for each

channel. This technique is used to smooth the classifier

output, reducing random noise while retaining a sharp

step response, in effect reducing the number of false

alarms.

• Threshold: The filtered outputs from the classifier are

compared to a threshold value to produce a binary

result.

• Channel fusion: A single decision for each epoch is

then made up from the individual channels. If any one

channel reports a seizure for the epoch, then that epoch

is classed as seizure.

• Collar: A collar of length 8 is applied to the binary

result. This process extends seizure detections by 8

epochs (36 seconds with a window of 8 seconds as men-

tioned in section III-A) on either side of the detection,

compensating for the difficulty in detecting seizures

in their very early or late stages. This improves the

temporal accuracy of detections.
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IV. TESTING METHODS

A. Classifier Training

The system is tested using a patient independent method.

This provides the most unbiased method for testing classi-

fiers. For each of k patients, their EEG is classified using a

model trained using data from the other k− 1 patients. This

means that the test is totally blind to the characteristics of

each test patient.

The training data for each patient was chosen specifically

from visual inspection of each seizure. This process allows

expert knowledge to be incorporated into the training process

and can greatly improve the accuracy of the classification.

B. Metrics

1) General System Performance: Receiver Operating

Characteristics (ROC) curves are often used to determine the

performance of a classification problem. They are generally

created by plotting sensitivity (the percentage of seizure

epochs correctly classified) against specificity (the percent-

age of non-seizure epochs correctly classified). The area un-

der this curve gives an indicator of system performance, with

an area of 1 being perfect performance (100% sensitivity and

specificity).

2) Feature Performance: A number of tests are carried out

in order to determine if the importance of features changes

with age.

• Single Feature Group (SFG) Performance: An SVM

is trained as discussed in section IV-A but only using

the features from a single group. The test data is then

processed by the system using this single feature group

SVM and the mean ROC area over all patients for each

database is calculated. This is repeated for each of the

feature groups. The dominance of a feature group is

shown by a higher mean ROC area.

• Feature Group Removed (FGR) Performance: For each

dataset, 3 classification tests are carried out, each with

one feature group removed. The first test includes only

those features in the Energy and Structural groups, the

second test only the Spectral and Structural groups and

the final test includes only the Spectral and Energy

groups. The dominant feature group can then be deter-

mined as being that which causes the largest reduction

in mean ROC area when removed.

V. RESULTS

A. Adult versus Neonatal Performance

Table II shows the performance of the system for the

adult and neonatal databases. The average adult ROC area

is 0.9409 with a standard deviation of 0.0830. This com-

pares equivalently with the results achieved for the neonatal

database, which resulted in a mean ROC of 0.9580 with

a standard deviation of 0.0302. While the mean of the

ROC areas for the adult database are approximately 2%

lower than for the neonatal database (not statistically sig-

nificant, p = 0.2310), the individual patient results show

that higher performance is achieved in more patients for the

Neonatal
Patient ROC Area

1 0.8843
2 0.9320
3 0.9658
4 0.9834
5 0.8941
6 0.9541
7 0.9822
8 0.9725
9 0.9511
10 0.9467
11 0.9901
12 0.9641
13 0.9707
14 0.9827
15 0.9625
16 0.9616
17 0.9876

Mean 0.9580

Std 0.0302

Adult
Patient ROC Area

2 0.9992
3 0.9944
4 0.9987
6 0.9475
7 0.7741
9 0.8748

11 0.9839
12 0.9826
13 0.9944
14 0.9981
15 0.9838
16 0.9562
17 0.9849
20 0.8979
21 0.7436

Mean 0.9409

Std 0.0830

TABLE II

ROC AREAS FOR THE NEONATAL AND ADULT DATABASES

adult database. This is also reflected in the larger standard

deviation for the adult database. 5 adult patients result in a

ROC area of > 0.99 whereas only 1 neonatal patient reaches

the 0.99 mark. Indeed, these 5 adult patients have the top

5 highest ROC areas of all the patients in both databases.

Correspondingly, 9 adult patients result in a ROC area of

> 0.98 whereas only 5 neonatal patients achieve this result.

At the other end of the scale, only 2 neonatal patients have a

ROC of less than 0.90, whereas in the adult database there are

4 such patients, with 2 below 0.80. The reason for the poor

performance in these patients (7 and 21) is as yet unknown.

Both patients have long seizures and neither recording is

badly inflicted with artifacts.

Mean ROC curves for the adult and neonatal databases

are shown in Fig. 3. The equal error rate line is also shown.

This is where the sensitivity and specificity are equal. The

EER for both the adult and neonatal data is 90%. The results

for the system compare well to previous studies. Subasi

[8] previously used a dynamic wavelet network to detect

seizures in adults with epilepsy. On the 5 test patients they

recorded ROC areas of 0.907 and 0.921 for two differ-

ent classifier types. Slooter et al. [9] previously employed

a synchronisation likelihood approach to detect seizures

in adults. Their system achieved a ROC area of 0.812.

Comparing these results with those reported in this paper

validates the motivation to use a system designed for the

more complicated problem of neonatal seizure detection to

improve seizure detection performance in adults. There are a

number of studies which use the same University of Freiburg

data as used for the adult database in this study [5], [10].

However, all of these studies deal with prediction of seizures

and there is no way to compare the results of this algorithm

with their results. In terms of neonatal detection performance,

Greene et al. [3] investigated a number of classifier types and

architectures for neonatal seizure detection and achieved a

ROC area of 0.820.
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Fig. 3. Mean ROC curves and EER for the adult and neonatal databases.
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Fig. 4. Performance of each feature group for the single feature group

(top) and the feature group removed (bottom).

B. Feature Performance

Fig. 4 shows the performance of each feature group in

the SFG and FGR tests. There is a distinct difference in the

feature group contributions for adult and neonatal seizure

detection. In the SFG tests it can be seen that the mean ROC

for the energy group is considerably lower than for the others

for the neonatal data, whereas each group contributes almost

equally in adults. It is also seen that the spectral features

are the largest contributor in the neonatal tests. This fact is

confirmed in the FGR tests. When the spectral features are

removed the lowest mean ROC results in both the neonatal

and adult data. On comparing the results on removing the

energy group or the structural group, it can be seen that there

is no significant performance difference in each case. With

the neonatal data this is significant, given that the energy

group alone has significantly lower performance than the

structural group, but when the energy and spectral groups

are used together (Structural FGR) they have equivalent

performance to the spectral and structural groups together

(Energy FGR).

Together this information shows three main characteristics

of the feature groups. Firstly, the spectral features are the

most dominant in both adult and neonatal data. This is to

be expected given the repetitive nature of seizures and the

variety of spectral measures used. Secondly, the energy group

performs significantly worse than the others with neonatal

data, but there is less mutual information between it and

the spectral group than between the spectral and structural

groups. Therefore, when used with spectral features, the

energy group adds significant information to the system.

Finally, to answer one of the questions first posed at the

beginning of the paper, there is a significant difference in the

performance of features between adult and neonatal data.

VI. CONCLUSION

This paper has addressed the problem of age-independent

seizure detection. This is the first study of this type known

to the authors. The results shown in Table II show that it is

possible to accurately detect seizures in both neonatal and

adult data with one algorithm. The performance figures for

both neonatal and adult data compare favourably to previous

studies. It has also been shown that features extracted from

the EEG contribute differently to neonatal and adult seizure

detection. A medical device using this algorithm could

potentially provide accurate seizure detection to patients of

all ages.

REFERENCES

[1] Albert-Ludwigs-Universitat Freiburg. [Online]. Avail-
able: https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-
project/eeg-database

[2] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic
seizure detection in the newborn: Methods and initial evaluation,”
Electroenceph. Clin. Neurophysiol., vol. 103, pp. 356–362, 1997.

[3] B. R. Greene, W. P. Marnane, G. Lightbody, R. B. Reilly, and
G. B. Boylan, “Classifier models and architectures for EEG-based
neonatal seizure detection.” Physiol Meas, vol. 29, no. 10, pp. 1157–
1178, Oct 2008. [Online]. Available: http://dx.doi.org/10.1088/0967-
3334/29/10/002

[4] E. M. Thomas, A. Temko, G. Lightbody, and G. B. Boylan, “A
gaussian mixture model based statistical classification system for
neonatal seizure detection,” in Submitted to IEEE Workshop on Ma-

chine Learning for Signal Processing (MLSP), 2009.
[5] B. Schelter, M. Winterhalder, T. Maiwald, A. Brandt, A. Schad,

J. Timmer, and A. Schulze-Bonhage, “Do false predictions of
seizures depend on the state of vigilance? A report from two
seizure-prediction methods and proposed remedies.” Epilepsia,
vol. 47, no. 12, pp. 2058–2070, Dec 2006. [Online]. Available:
http://dx.doi.org/10.1111/j.1528-1167.2006.00848.x

[6] A. Temko, E. Thomas, G. Boylan, W. Marnane, and G. Lightbody,
“An SVM-based system and its performance for detection of seizures
in neonates,” submitted to 31st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), 2009.

[7] S. D. Faul, “Automated neonatal seizure detection,” Ph.D. dissertation,
University College Cork, 2007.

[8] A. Subasi, “Epileptic seizure detection using dynamic wavelet net-
work,” Expert Systems with Applications, vol. 29, pp. 343–355, 2005.

[9] A. J. C. Slooter, E. M. Vriens, F. S. S. Leijten, J. J. Spijkstra, A. R. J.
Girbes, A. C. van Huffelen, and C. J. Stam, “Seizure detection
in adult ICU patients based on changes in EEG synchronization
likelihood.” Neurocrit Care, vol. 5, no. 3, pp. 186–192, 2006.
[Online]. Available: http://dx.doi.org/10.1385/NCC:5:3:186

[10] T. Maiwald, M. Winterhalder, R. Aschenbrenner-Scheibe, H. U. Voss,
A. Schulze-Bonhage, and J. Timmer, “Comparison of three nonlinear
seizure prediction methods by means of the seizure prediction char-
acteristic,” Physica D, vol. 194, pp. 357–368, 2004.

6615


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

