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Abstract— We propose a novel method to characterize

the spontaneous brain signals using Hilbert phases. The

Hilbert phase of a signal exhibits phase slips when the

magnitude of the successive phase difference exceeds π.

To this end we use standard deviation (σ∆τ) of the time

(∆τ) between successive phase slips to characterize the

signals. We demonstrate the application of this approach

to neonatal and fetal magnetoencephalographic signals

recorded using a 151-sensor array to identify the sensors

containing the neonatal and fetal brain signals. To this

end we propose a spatial filter using σ(∆τ) as weights

to reconstruct the brain signals.

I. INTRODUCTION

Signals from a physical or biological system can be

decomposed into amplitude and phase components. The

Hilbert transform [1] is a commonly used approach to

compute the instantaneous phase of a signal. Using the

phases of two signals, it is possible to characterize the

synchrony between them and this is a well-established

technique [1, 2]. Information theoretic measures have

been used to quantify the direct and indirect connec-

tion between the signals originating from multichannel

systems [3]. Phases are less sensitive to the mixing

property (smearing of the signal from the local re-

gion to neighboring regions), a common problem in

spatio-temporal systems such as multi-channel elec-

tro/magnetoencephalogram (E/MEG). Hence, to char-
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acterize the signals from these systems, techniques

involving phases are preferred over other conventional

techniques. Here, we propose a uni-variate approach

to characterize the signal using Hilbert phases. The

phase of a signal exhibits slips when the magnitude

of the successive differences exceed π. We use the

standard deviation σ(∆τ) of the time difference ∆τ
to characterize the system. We extend this approach to

spatio-temporal neonatal and fetal MEG data to identify

the sensors containing the spontaneous brain activity.

Finally, we propose a construct for a spatial filter using

σ(∆τ) to reconstruct the brain signals.

II. METHODOLOGY

For a uniformly sampled signal x(t), Hilbert trans-

form h(t) is defined through the following convolution

integral:

h(t) =
1

π
P.V.

∫
∞

−∞

x(τ)

t − τ
dτ,

where P.V. denotes Cauchyś Principle Value. Basically

this integral introduces a phase shift of −90◦ to the

signal x(t). The signal together with its Hilbert trans-

form can be represented as a complex-value analytic

function a(n) as follows: a(n) = x(n) + i · h(n),
where i =

√
−1 and t = n/sf , n is the sample

number and sf is the sample frequency in Hertz. All

the calculations reported in this work are done using

Matlab (Mathworks Inc. Natick, MA, USA) and the

hilbert function in this software directly provides a(n).
For the complex-value function a(n), the (Hilbert)

phase is defined as ϕ(n) = tan−1{h(n)/x(n)}. The

Hilbert phase ϕ(n) exhibits slips when the magnitude

of the successive difference between the phase exceeds

π. We define the time difference between successive

phase slips as ∆τ(i) = τi+1 − τi. A histogram of ∆τ
for periodic signals will have a δ−distribution with the

peak centered at the periodicity of the signal and with

the amplitude equal to the number of such cycles in

the signals. Thus, spectral properties can be studied
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using ∆τ and this has been attempted in an earlier work

[4] to study spectral content of atmospheric variables.

In this work, we quantify the dynamics of the system

by computing the standard deviation σ(·) of ∆τ . It

is easy to infer that for periodic signals σ(∆τ) will

be zero and for aperiodic signals it will have non-

zero value. For white noise, which is a high frequency

process, ∆τ will be small and hence σ(∆τ) will also

be small while for correlated noise (such as EEG) and

quasi-periodic signals, σ(∆τ) will be large. Thus it is

possible to distinguish different types of signals based

on the σ(∆τ) values [5]. In the next section, we will

apply this approach to neonatal and fetal MEG recorded

using a 151 sensor array system and identify the sensors

that contain the brain signals. Further, we propose a

spatial filter using σ(∆τ) to reconstruct the neonatal

and fetal MEG sources.

III. APPLICATION TO NEONATAL AND

FETAL MEG

Neonatal and fetal MEG are recorded using an in-

strument called SARA (SQUID Array for Reproductive

Assessment), which is specifically designed to study

the maternal-fetal physiology [6]. This instrument is

completely non-invasive, and detects weak biomagnetic

fields associated with the electrophysiological activity

in the human body. SARA is equipped with 151 pri-

mary magnetic sensors with an approximate distance

between the sensors of 3 cm and spread over an area

of 1300 cm2. The sensor array spans the maternal

abdomen longitudinally from the symphysis pubis to

the uterine fundus and a similar distance laterally. For

neonatal studies, a special cradle has been devised that

can be attached to the SARA. The neonate is placed in

the cradle and its head is rested on the SARA sensors

to record the brain signals.

The neurological maturation of fetuses and neonates

is traditionally assessed by evoked response study [7,

8]. Another modality for this purpose is the study

of spontaneous brain activity (SBA). SBA contains

characteristic patterns such as Tracé Alternant (TA),

Trace Discontinu (TD), Continuous polyfrequency, etc

[9]. These patterns and their frequency of occurrences

change with gestational age. Thus, by studying these

patterns it is possible to understand the neurological

maturation of the neonates and fetuses.

Prior to a SARA study, ultrasound measurements are

performed to locate the fetal head and this information

is marked on the sensor domain. Based on this informa-

tion, MEG from a large group of sensors overlaying this
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Fig. 1. Results of phase slip analysis of neonatal and fetal MEG.

σ(∆τ ) of the MEG data from the all the SARA sensors is displayed

as a contour plot for (a), (b) neonate and (c),(d) for fetuses. White

dots in (c) and (d) represent the fetal head position localized using

ultrasound measurement.

region is used to study the SBA. The expert neurolo-

gists usually score the classical brain patterns by visual

inspection. However, it is a tedious process considering

the situation of analyzing data from a large group

of sensors. Hence, an automated approach to identify

the sensors that may contain the SBA would help

the experts to restrict their inspection to those sensors

and improve the capability to study the neurological

maturation. In this work, we propose to use the Hilbert

phase slip approach to identify the sensors containing

SBA. In the case of neonates, the sensor over which

the neonatal head is rested can be easily determined

during the study (usually middle and lower sensors)

and hence the SBA analysis can be restricted to those

sensors. Thus, we can use the neonatal MEG as a test

case for our approach and in the next step we apply this

approach to the fetal MEG. In this study, we consider

MEG datasets of two neonates and two fetuses. The

neonatal data are recorded within two weeks after birth

(conceptional age varying between 38-45 weeks) and

the fetal datasets are recorded during 33 weeks and 36

weeks of gestation (for the details of the data acquisi-

tion we refer to [7]). Further, we bandpass filter the data

between 1-25 Hz using Butterworth filter with zero-

phase distortion. Each data is recorded for a period of

six minute duration with the sampling rate of 312.5 Hz.

The interfering cardiac signals are attenuated offline by

signal space projection technique [7]. In some cases,

a few (partially attenuated) cardiac traces remain in

the data and these are considered as artifacts in the

data interpretation. For each data, we compute σ(∆τ)
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for the MEG from all the 151 sensors and present

the results in Figure 1 as a contour diagram on the

sensor array. Neonates discussed here are mostly asleep

during a SARA study. Therefore the MEG signals will

be more stationary compared to the fetus (see below).

Based on this discussion, one would expect the brain

signals to be more localized in the sensors where the

neonatal head is positioned and the rest of the sensors

being populated by sensor noise. In addition, as the

neonatal brain signals are band limited process [10], the

sensors containing these signals exhibit higher σ(∆τ)
compared to the other sensors and it is observed in the

results shown in Figure 1(a, b). The region localized by

this approach overlaps very well with the sensor region

over which the neonatal head rested during the study.

During pregnancy, the fetus tends to move inside the

uterus and the fMEG data recorded are prone to be

spread across more sensors than localized as shown in

the neonates. Figure 1c shows an example of a fetus at

33wk with a larger dispersion in the fMEG signals. The

movement in the above fetus is also confirmed from

the acceleration patterns in the heart rate. On the other

hand, the fetal data shown in Figure 1d corresponding

to 36 wk of gestation had less fetal movement and

this is evident in Figure 2d as the brain signals are

localized over a few sensors. The fMEG signals are

also shown to be a band limited process [11], hence one

would expect the sensors containing the brain signals

to display higher σ(∆τ) values compared to the other

sensors and is observed in the results shown in Figures

1(c,d). In addition, the fMEG signals localized using

this approach are in close agreement with the fetal head

position marked using ultrasound measurement (shown

as white dots in Figures 1 c, d).

IV. SPATIAL FILTER AND

RECONSTRUCTION OF MEG

In this work, we introduce a spatial filtering approach

to reconstruct the SBA. The traditional source analysis

techniques such as beamformer, will assume a standard

model (usually spherical model) and will try to identify

the spatial locations that can maximally explain the

signals observed in the sensor domain. However, the

approach proposed here is entirely based on the sensor

data and the information about the source cannot be

obtained. In this preliminary study we assume that there

is only a single source generating the brain signals but

the forward model is unknown. For this purpose we

consider the MEG from the top five sensors based on

the σ(∆τ) values and denote their indexes as κi, (i =

1 to 5). The source can be reconstructed by linearly

combining the data from these MEG sensors by weight-

ing each one by its corresponding σ(∆τ). However, in

this case the polarity of the original signals will not

be preserved and in effect the features present in the

original data may not be found in the reconstructed

data. In order to correctly reconstruct the data so as to

preserve the polarity, we do the following: Out of these

five sensors we select the sensor that displayed highest

σ(∆τ) and use it as a reference to adjust the polarity

of the other four signals. We compute the correlation

coefficient (ρ) between the reference and the other four

sensors and multiply the σ(∆τ) by the sign of the

corresponding ρ. In this process, we assign a positive

sign for the reference sensor. We use these polarity-

adjusted σ(∆τ) values to construct the weight matrix

w, which is a column matrix with n rows (same as

the number of MEG sensors). This matrix is initially

populated with zeros. The elements corresponding to

the indexes in κ are replaced by the modified σ(∆τ).
To this end we normalize wi as follows:

zi = wi/

n∑
i

|wi|

and reconstruct the MEG as S = Xz, where X is a

matrix containing the raw MEG data.

Using this procedure we reconstruct the MEG for

all four datasets studied in this work and present the

results in Figure 2. If the whole reconstructed data is

presented, it may not be possible to observe the distinct

patterns in them. The raw MEG data is presented to

the neurologist to score for the presence or absence

of continuous and discontinuous patterns in the data

and here we present some of these instances in the

reconstructed data. In Figure 2, we present instances

of reconstructed MEG containing (Discontinuous) TA

and continuous patterns for Neonate1 and Fetus2. TA is

characterized by a burst activity interleaved by relative

quiescence and the continuous pattern is characterized

by the mixture of slow and high frequency waves

representing the background activity. The traces from

Neonate1 (Figure 2a) and Fetus2 (Figure 2c) exhibit

the features of TA and the traces shown in Figure 2(b)

and (c) exhibit the features of continuous activity. Thus

the signal reconstruction approach proposed preserves

the features in the original data.

One can also use the spectral power in a suitable

band (e.g. 1-25 Hz) to localize the sensors containing

brain signals and thereby to reconstruct the MEG data.

Since, it is more sensitive to the amplitude changes,
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Fig. 2. Traces of reconstructed MEG of Neonate1 and Fetus2.

A portion of the reconstructed data containing the TA patterns and

continuous data is shown in (a) and (b) for Neonate1 and (c) and

(d) for Fetus2, respectively. Due to the longer inter-burst duration

in fetus, 30 sec duration of data is presented in (c) and (d).

it cannot distinguish between the partially attenuated

cardiac signals and the brain signals and hence it may

not be suitable for this purpose. On the other hand,

the Hilbert phase is robust to the amplitude changes in

the signal and hence it can correctly identify the brain

signals.

V. CONCLUSION

A novel approach based on Hilbert phase is pro-

posed to characterize the signal. The feasibility of this

approach to identify the brain signals embedded in

151-dimensional MEG data is demonstrated. Based on

the Hilbert phase approach, a novel spatial filter is

proposed to reconstruct the MEG signal. Currently we

are working on the development of a computer based

automatic detection of the brain patterns. The MEG

reconstruction approach proposed here will be used in

the detection scheme to identify the brain patterns.
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