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Abstract— Characterization of patient-specific disease fea-
tures at a molecular level is an important emerging field.
Patients may be characterized by differences in the level and
activity of relevant biomolecules in diseased cells. When high
throughput, high dimensional data is available, it becomes
possible to characterize differences not only in the level of
the biomolecules, but also in the molecular interactions among
them. We propose here a novel approach to characterize patient
specific signaling, which augments high throughput single cell
data with state nodes corresponding to patient and disease
states, and learns a Bayesian network based on this data. Fea-
tures distinguishing individual patients emerge as downstream
nodes in the network. We illustrate this approach with a six
phospho-protein, 30,000 cell-per-patient dataset characterizing
three comparably diagnosed follicular lymphoma, and show
that our approach elucidates signaling differences among them.

I. INTRODUCTION

Cells respond to their environment via signaling pathways,

in which extracellular cues trigger a cascade of information

flow, causing signaling molecules to become chemically,

physically or locationally modified, gain new functional

capabilities, and affect subsequent molecules in the cas-

cade, culminating in a phenotypic cellular response. The

disregulation of signaling pathways has been implicated in

numerous disease states, such as autoimmune disease and

cancer [8], [9]. Characterization of disease state via signaling

profiling of patient samples has been previously successful,

identifying prognostic indicators and segregating patients

based on disease outcome [2]. However, these studies have

focused on signaling proteins in isolation, neglecting the

multivariate interactions among the signaling proteins, that

result from the highly intertwined signaling network that

they compose. Additional information is contained in this

multivariate data which is not utilized by the univariate anal-

yses performed in these studies. This additional information

may help to further characterize patient profiles, leading to a

potential for better and earlier diagnostic tests and improved

prognostic indicators. Here, we propose a novel approach

to characterize patient signaling profiles, based on analysis

of high throughput, multidimensional single cell measure-

ments performed using an approach called flow cytometry.

Single cell measurements of signaling proteins of interest

are obtained in high throughput for each patient, yielding
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thousands of cells per patient. The large sample size provides

an opportunity to examine not only the distribution of

individual phospho-proteins but also - because the molecules

are measured simultaneously - enables the elucidation of

statistical relationships among them.

Cancer is a heterogeneous disease, thought to arise from

a culmination of multiple random mutations [8]. Because

of this, patients bearing identical diagnoses may behave

quite differently on a molecular level [9]. We present an

approach to characterize patients based on patient-specific

signaling and elucidate inter-patient signaling variability.

This approach distinguishes patients based on what nodes in

the interconnected phospho-protein network are dependent

on the identity of each patient, in a sense, which nodes

are influenced by each patient. The approach is based on

Bayesian network structure learning, in which the data,

consisting of single cell measurements of signaling proteins,

is augmented by ’state nodes’, indicator variables reflecting

the origin of each cell in the data matrix. These state

nodes, one per patient, are included in the Bayesian network

structure learning step, and the resulting graph automatically

indicates which nodes and interactions in the network contain

variability specific to each patient, providing a high level

characterization of patient signaling profiles.

In this proof of principle study, we apply our approach to

a dataset of 3 equivalently diagnosed follicular lymphoma

patients. We show that our approach is able to distinguish

molecular level heterogeneity among these patients.

Flow cytometric patient data

The data we employ comes from flow cytometry, a unique

proteomic tool which allows high throughput profiling of the

protein content of individual cells, measuring thousands of

cells per second [9]. It is possible to specifically measure

the abundance of the phosphorylated form of proteins of

interest, a crucial feature, since the phosphorylated form is

typically the active form. Phosphorylated signaling proteins

of interest are labeled with fluorescent-tagged antibodies,

and fluorescence is quantified on a cell by cell basis. In

prior studies, B cells from follicular lymphoma patients were

stimulated through the B-cell antigen receptor (BCR) and,

at several time points following stimulation, the cells were

fixed, permeabilized, and stained to measure the activation

state of six signaling proteins, SYK, Src family kinases

(SFK, e.g. Lyn), ERK, p38, and CBL [3]. Here we focused

on the time point eight minutes following activation of BCR

signaling in order to compare differences in initiation and

amplification of signaling. Data studied were from tumor
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biopsy specimens taken prior to any therapy from patients

newly diagnosed with follicular lymphoma [3]. Tumor spec-

imens were obtained with informed consent in accordance

with the Declaration of Helsinki and this study was approved

by Stanford University’s Administrative Panels on Human

Subjects in Medical Research.

Bayesian networks We employ a graphical model tech-

nique called Bayesian network (BN) structure learning to

learn statistical dependencies among variables. Bayesian

networks [4], represent probabilistic dependence relation-

ships among multiple interacting components, illustrating the

effects of pathway components upon each other in the form

of an influence diagram - a graph (G) - and a joint probability

distribution. In the graph, the nodes represent variables (the

biomolecules) and the (lack of) edges represent (conditional

in)dependencies [4]. For each variable, a conditional prob-

ability distribution (CPD) quantitatively describes the form

and magnitude of its dependence on its parent(s) [5]. These

models can be automatically derived from experimental

data through a statistically founded computational procedure

termed network inference or structure learning.

A. Overview of approach

Our goal in this work is to provide a high-level character-

ization of patient signaling. We approach this by building a

multivariate model of statistical interactions among random

variables (the measured phospho-proteins), into which we

incorporate nonrandom ’state variables’, representing each

patient. We build a graphical model to learn the statisti-

cal dependencies among the variables, in which the state

variables are allowed to participate as root nodes. For each

patient, points of distinction in the network emerge as targets

of the patient node. These targets (known as ”children”) of

each patient node provide an indication of which phospho-

proteins and interactions are distinct in a particular patient,

as compared to other patients or to a background distribution

from healthy samples, yielding a characterization of patient-

specific signaling.

To learn the model structure, we start with the measured

phospho-protein levels in each cell. In this dataset, over

30,000 cells were available for each patient, providing a

statistically robust dataset size for probabilistic analysis.

Each dataset consists of a matrix with 6 columns, one for

each phospho-protein, and 10,000 (or more) rows, one for

each cell. We first concatenate the data matrices from each

patient, producing one large matrix with 6 columns and

10, 000 ∗ n rows, assuming n patients and 10,000 cells per

patient. Next, the data matrix is augmented with additional

columns of binary indicator variables, one for each patient,

labeling the source of each cell in the data matrix. For

instance, if cells 10,001-20,000 came from patient 2, those

rows will contain a 1 for the patient 2 state node, and a zero

in the other state nodes. When healthy samples are included

in the analysis, the rows corresponding to cells from healthy

samples will contain zeros in the columns for all the patient

nodes. A ’disease state’ node can also be incorporated,

by augmenting the data matrix with an additional column

bearing a 1 for each patient derived cell (regardless of patient

identity) and a zero for each cell originating in a healthy

sample. Note than in general, the state nodes need not be

binary (for instance, they can indicate degree of severity

of disease sample, if known). Finally, Bayesian network

structure learning is performed, with state nodes constrained

to be root nodes (i.e. have an in-degree of zero).

We are aware of two earlier studies in which data were

similarly augmented by state nodes, in a Bayesian network

learning context. Eaton and Murphy [1] included state vari-

ables for drug activities and Lee et al. [6] utilized state

variables to represent yeast genotype. In each of these earlier

efforts, the focus was on learning the structure of the random

variables; the state variables served to help in the structure

learning effort. In the approach proffered here, we focused

less on the inferred structure among the phospho-protein

variables and aimed instead to characterize the state (patient)

nodes themselves. To our knowledge, this is the first time

such an approach has been employed.

B. Model justification and interpretation

Learning the Bayesian network model augmented with

state nodes allows us to find the points of influence of the

state nodes, providing a characterization of these nodes. How

does this work, and how should the results be interpreted? In

the structure learning algorithm, an edge may be added from

node i (either a state node or a regular node representing a

random variable) to node j if i is predictive of j, in the

context of j’s other parents (if any). There is a tradeoff

between simple models and those that accurately capture the

empirical distribution observed in the data. The employed

Bayesian scoring metric captures this trade-off, thus, an edge

will be added only if sufficient evidence exists to support it

[5]. When sufficient data exists, an edge will appear even

if it is only evident in a subset of the data. Thus, with

our approach employing a concatenated matrix of all patient

data, edges can appear if they are supported by any of the

data subsets, originating from individual patients. The patient

specificity of these edges will be indicated by outgoing edges

from each patient node. For example, if phospho-protein Y

is well predicted by phospho-protein X in the dataset, the

learned structure between them may be X → Y . If, for

patient i, X is no longer predictive of Y , or if it is predictive

but the conditional distribution P (Y |X) is altered, then the

structure learning algorithm may also add the edge i → Y .

In general, an edge from a state node to a phospho-protein

indicates that the distribution of the phosphorylated form of

that protein (conditioned on its other parents in the network)

is different when conditioned also on the patient, in other

words, that phospho-protein’s distribution is different for the

patient than it is in the background distribution (i.e. the

distribution observed in the other patients or in the healthy

samples). This may appear as a simple change in abundance

of the phosphorylated form of a particular protein. However,

it can also be true even if the phospho-protein abundance

has not changed. To envision this, consider phospho-proteins

A and B, with the relationship A → B, where A is an
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activator of B. In patient i, the level of A is particularly

low, so we anticipate the relationship i → A. In this case, the

arrow corresponds to a change in the level of A. However,

the patient may also have an altered A → B relationship,

in which the activation of B by A is much stronger than

usual. Since the conditional distribution of B is different

for patient i, the edge i → B will emerge, however, B’s

level may be imperceptibly different from the background

distribution. This kind of patient specific alteration, in which

the overall value of a phospho-protein is unchanged, but its

conditional distribution is affected, is very difficult to discern

by inspection of two and three dimensional plots, especially

if the relationship itself is complex and involves multiple

variables. However, it is straightforward to elucidate this

change using the Bayesian network approach.

Our approach characterizes patient-specific signaling al-

terations, leading naturally to the possibility of comparing

these alterations across patients. In particular, the patients in

this study all have equivalent diagnoses: does this translate

into similar signaling profiles? In fact it does not, as specific

differences are clearly elucidated, a fact that can be seen

at a glance when inspecting the resulting models. Detailed

interpretation of the graphs requires more care. Patients

with different downstream targets indicate differences in

alterations, as anticipated. However, patients pointing to the

same phospho-protein target may in fact have unique alter-

ations with respect to that phospho-protein; each Patient→
Phospho-Protein edge indicates a difference of the patient

specific distribution as compared to the background distribu-

tion, but does not tell us how each patient’s imposed distri-

bution compares to the other patients’ altered distributions.

This further level of details can be extracted from the model

CPDs, a useful extension that we leave for future study.

II. RESULTS

In this proof of principle study, we applied our approach to

data from three patients and from healthy controls. Samples

were stimulated as described and fixed at 8 minutes after

stimulating BCR signaling [3]. Six phospho-proteins were

profiled, three at a time, with SYK, ERK and p38 measured

in one stain set panel, and CBL, SFK and BTK in a second

panel. Two stain sets were used because measuring phospho-

rylated forms of all 6 proteins together, along with the nec-

essary surface markers for identification of the relevant cell

types, would have caused logistical and technical difficulties.

Additionally, the data were not originally generated for

multivariate analysis, and so no attempt was made to increase

the dimensionality of each experiment. We augmented the

data matrix as described above, adding a state node for each

patient. Because both stimulated and unstimulated data were

included, a stimulation state node was included as well, to

avoid confounding the distributions. This state node was fully

connected as anticipated, so it has been eliminated from the

results graphs for visual convenience. Data were discretized

to 6 levels, and structure learning was performed as pre-

viously described [7], with all state nodes constrained to be

root nodes. The resulting model (figure 1A) shows very high,

Fig. 1. Model results. Structure learning was performed on the phospho-

protein variables augmented with A. patient nodes only or B. patient nodes

in addition to a disease state node. All state nodes are constrained to be

roots.

nearly full, connectivity, with nearly all patients pointing to

nearly all phospho-proteins. None of the patients pointed to

p38, in spite of the fact that p38 is higher in these patient

samples than in the normal controls (see [3]). Although the

abundance of phosphorylated p38 changed in the disease

state, this difference was explained by the influence of ERK

on p38. Thus, the absolute amount of phosphorylated p38

was altered, but the conditional distribution P (p38|ERK)
remained the same. Patient 1 alone did not point to ERK.

Consistent with this, the correlation between ERK and SYK

in the Patient 1 sample was similar to that in the healthy

samples (R ≈ 0.8, data not shown), while the correlation in

the Patient 2 and Patient 3 samples was distinct.

The disease state results in general changes, making the

patients as a group distinct from the healthy samples. These

differences obscure individual patient to patient variation in

the model results. We addressed this by including a disease

state node, which indicated for each cell in the data whether

it was from a healthy sample or a disease sample in a

patient nonspecific manner. The resulting model (figure 1B)

is significantly more sparse than the original model, with

general disease differences indicated by the disease state

node. From stain set 1, the disease state node points to SYK,

but not to ERK or p38. Irish et al. [3] reported a difference

in activation of all three of these phospho-proteins, but our

model was able to discern that the difference was due to

the difference in SYK; their conditional distributions remain

unchanged from the healthy to disease state. Additionally,

the original study did not explore the role of CBL or

SFK, but our model discerned a change in these phospho-

proteins. Examination of the data revealed a change in the

distributions of these molecules (figure 3), however, because

the data are non-normal and nonunimodal, the summary

statistics employed in [3] missed these changes. Thus, our

approach successfully identifies differences between healthy

and disease states.

Differences among the patients could be seen more clearly

once the major disease/healthy alterations were represented

separately (by the disease state node). As before, Patient 1
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Fig. 2. Raw data. 2 dimensional plot of SYK versus ERK. Patient 7

corresponds to patient 1, patient 10 to patient 2 and patient 11 to patient

3. A healthy control is included for comparison.

Fig. 3. Raw data. A. 3-dimensional and B. Histogram plots of stain set 2
phospho-proteins. Patient 7 corresponds to patient 1, patient 10 to patient

2 and patient 11 to patient 3. A healthy control is included for comparison.

did not point to ERK because the SYK, ERK correlation was

similar to healthy samples. Note that the disease state node

did not change this, because it itself did not point to ERK.

Patient 2 did not point to SYK, which is consistent with

the data – the SYK distribution was about average among

the patient samples. However, the SYK, ERK correlation for

Patient 2 was different from the other patients, explaining

the presence of an edge from Patient 2 to ERK. (See figure

2)

Prominently, for the stain set 2 phospho-proteins, Patient

3 pointed to no phospho-proteins. This is unsurprising, as

the values of three phospho-proteins were about average for

the disease state for this patient. Patient 2 had a level of

CBL that was about average for the disease state, but a

drastically altered distribution of SFK and BTK, as discerned

by the model. A visual inspection of the data demonstrates

that the joint distributions of the stain set 2 phospho-proteins

were different among the three patients, though it does not

clearly demonstrate the specific points of difference for each

patient, aside from those mentioned above (figure 3). In

general, the technique was more sensitive to changes, as

compared to what can be discerned by visual inspection. As

the dimensionality of our data increases to 4 dimensions and

beyond, a thorough visual inspection of the complex inter-

actions becomes impossible, necessitating a computational

examination of patient differences.

III. DISCUSSION AND CONCLUSIONS

In this work, we presented a new modeling scheme for

the characterization of patient and disease state from multi-

variable data-sets. We did this by augmenting the Bayesian

Networks model of the phospho-protein signaling pathway

by nodes pertaining to the patients and the disease states.

This modeling scheme is extremely effective in terms of

characterizing the relationship between the patient state and

phospho-protein concentrations. In particular, very complex

relationships can be detected and reported. This is obvious

in our results, especially in the cases where the causal

relationships between the patient nodes and phospho-proteins

were reported, even in the cases where the average concen-

tration of the proteins wasn’t affected by the patient (but

the distribution was affected). Additionally, our modeling

scheme distinguished between phospho-proteins that had

different concentrations purely because of patient properties,

and those that had different concentrations because of the

difference in other proteins.

Similar advantages of our scheme are evident in the

characterization of the disease state. Our scheme detects very

complex changes in per-cell phospho-protein concentrations,

when there are enough data to support the validity of

those changes. Additionally, phospho-proteins affected by

the disease state were well distinguished from those that

were affected purely by changes in other phospho-proteins’

concentrations.

Our ability to characterize disease state and patient signal-

ing, indicating differences in comparably diagnosed patients,

may lead to the development of improved and more detailed

diagnostic tools, which, if assessed for prognostic indica-

tions, may enable more specific, more personalized and more

effective therapies.
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