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Abstract— We present a novel parametric encoding scheme
for efficiently recording white matter fiber bundle information
obtained from diffusion tensor imaging. The coordinates of fiber
tracts are parameterized using a cosine series expansion. For an
arbitrary tract, a 19 degree expansion is found to be sufficient
to reconstruct the tract with an average error of about 0.26
mm. Then each tract is fully parameterized with 60 parameters,
which results in a substantial data reduction. Unlike traditional
splines, the proposed method does not have internal knots and
explicitly represents the tract as a linear combination of basis
functions. This simplicity in the representation enables us to
design statistical models, register tracts and perform subsequent
analysis in a more streamlined mathematical framework. As an
illustration, we apply the proposed method in characterizing
abnormal tracts that pass through the splenium of the corpus
callosum in autistic subjects.

I. INTRODUCTION

Diffusion tensor imaging (DTI) can be used to characterize

the microstructure of biological tissues using measures of

the magnitude, anisotropy and aniotropic orientation [2]. It

is assumed that the direction of greatest diffusivity is most

likely aligned to the local orientation of the white matter

fibers. White matter tractography offers the unique opportu-

nity to map out, segment and characterize the trajectories

of white matter fiber bundles noninvasively in the brain.

Most deterministic tractography algorithms use the local

diffusion tensor orientation to estimate the local direction of

propagation along the reconstructed pathway or fiber tract

[3] [8] [13] [15]. Tractography has been used to visualize

and map out major white matter pathways in individuals and

brain atlases [6] [16] [23] [24], segment specific white matter

areas for region of interest analyses [12], quantify white

matter morphometry and connections [19] [22], and visualize

the relationships between brain pathology and white matter

anatomy for clinical applications like neurosurgical planning

[1] [17] [18]. However, tractography data can be challenging

to interpret and quantify. Whole brain tractography studies

often generate many hundreds of thousand tracts. Recent

efforts have attempted to cluster [20] and automatically

segment white matter tracts [21] as well as characterize

tract shape parameters [4]. Many of these techniques can be

quite computationally demanding. Clearly efficient methods

for representing tract shape, regional tract segmentation and
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clustering, tract registration and quantification would be of

tremendous value to researchers.

In this paper, we present a novel approach for parameteriz-

ing tract shapes using Fourier descriptors. Fourier descriptors

have been previously used to classify tracts [4]. The Fourier

coefficients are computed by the Fourier transform that

involves the both sine and cosine series expansion. Then the

sum of the squared coefficients are obtained up to degree 30

for each tract and the k-means clustering is used to classify

the fibers globally. Our approach differs from [4] in that we

obtain local shape information employing cosine series only,

a special case of Fourier series. Using the new representation,

we demonstrate how to quantify abnormal pattern of white

matter fibers passing through the splenium of the corpus

callosum for autistic subjects.

II. COSINE REPRESENTATION

We are interested in encoding a tract M consisting of n

noisy control points p1, · · · , pn. Consider a mapping ζ−1

that maps the control point pj onto the unit interval [0, 1] as

ζ−1 : pj →

∑j

i=1 ‖pi − pi−1‖
∑n

i=1 ‖pi − pi−1‖
= tj. (1)

This is the ratio of the arc-length from the point p1 to pj, to

p1 to pn. We let this ratio to be tj. We assume ζ−1(p1) = 0.

Then we parameterize the smooth inverse map

ζ : [0, 1] → M

using the cosine basis functions:

ψ0(t) = 1,ψl(t) =
√
2 cos(lπt).

The representation is first introduced in [7]. The constant√
2 is introduced to make the eigenfunctions orthonormal in

[0, 1] so that

∫1

0

ψl(t)ψm(t) dt = δlm, (2)

the Dirac-delta function. If we denote the coordinates of ζ

as (ζ1, ζ2, ζ3), the k-th degree cosine series representation

is given by

ζo(t) =

k∑

l=0

cloψl(t). (3)

The Fourier coefficients clo are estimated by solving the

system of equations obtained at the n control points:

ζo(tj) =

k∑

l=0

cloψl(tj). (4)
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Fig. 1. Cosine representation of a tract at various degrees. Red dots are control points. The degree 1 representation is a straight line that fits all the control
points in a least squares fashion. The error plot displays the average reconstruction error in millimeter (vertical) vs. degree (horizontal).

In the matrix notation, we write (4) as

Yn×3 = Ψn×kCk×3

where Y = (ζo(tj)), Ψ = (ψl(tj)) and C = (clo). Then the

least squares estimation of C is given by

C = (Ψ ′Ψ)−1Ψ ′Y.

The proposed least squares estimation technique avoids

using the Fourier transform (FT) [4] [5] [9]. The drawback

of the FT is the need for a predefined regular grid system

so some sort of interpolation is needed. After various ex-

periments to obtain the optimal degree, we decided to use

k = 19 through out the paper (Figure 1). This gives the

average error of 0.26mm along the tract. The plot of the

average reconstruction error for other degrees is given in

Figure 1.

The advantage of the cosine representation is that, instead

of recording the coordinates of all control points, we only

need to record 3 · (k + 1) number of parameters for all

possible tract shape. This is a substantial data reduction

considering that the average number of control points is 105

(315 parameters). We recommend readers to use k ≤ 30

degrees for most applications.

III. APPLICATION TO AUTISM STUDY

A. Image Acquisition and Preprocessing

DTI data were acquired on a Siemens Trio 3.0 Tesla

Scanner with an 8-channel, receive-only head coil. Diffusion-

weighted images were acquired in 12 non-collinear diffusion

encoding directions with diffusion weighting factor 1000

s/mm2 in addition to a single reference image. Data acquisi-

tion parameters included the following: contiguous (no-gap)

fifty 2.5mm thick axial slices with an acquisition matrix of

128x128 over a FOV of 256mm, 4 averages, repetition time

(TR) = 7000 ms, and echo time (TE) = 84 ms.

Eddy current related distortion and head motion of each

data set were corrected using AIR and distortions from

field inhomogeneities were corrected using custom software

algorithms based on [11]. Distortion-corrected DW images

were interpolated to 2× 2× 2mm voxels and the six tensor

elements were calculated using a multivariate log-linear

regression method [2].

The images were isotropically resampled at 1mm3 reso-

lution before applying the white matter tractography algo-

rithm. The second order Runge-Kutta streamline algorithm

with tensor deflection [13] was used. The trajectories were

initiated at the center of the seed voxels and were terminated

if they either reached regions with the factional anisotropy

(FA) value smaller then 0.15 or if the angle between two

consecutive steps along the trajectory was larger than π/4.

Each tract consists of 105 ± 54 control points. The distance

between control points is 1mm. Whole brain tracts are stored

as a file of size approximately 600MB. Whole brain white

matter tracts for 74 subjects are further aligned using the

affine registration [10] of FA-maps to the average FA-map .

B. Autism Population Study

The representation provides 60 dimensional feature vectors

(coefficients) for characterizing a single tract. We have inves-

tigated the utility of the proposed representation in the ability

to discriminate the different clinical populations (42 autistic

and 32 control subjects). We have focused our detailed

anatomical study on the splenium of the corpus callosum,

which is manually masked by J.E. Lee [14]. Then the tracts

passing through a ball of radius 5mm at the spleninum are

identified. Each subject have 1943 ± 1148 number of tracts

passing through the ball. The within-subject tract averaging

can be easily done within our representations by summing

the coefficients of the same degree [7] (Figure 2). First two

images in Figure 3 shows the 74 average within-subject tracts

color coded according to autism (red) and controls (blue).

The control subjects seem to show more clustering of fibers

compared to autistic subjects. So we have tested the statistical

significance of the clustering.

Given two tracts

ζo =

k∑

l=0

cloψl and ηo =

k∑

l=0

cloψl,

the L2-distance between the two tracts is defined as

ρ(ζ, η)(t) =

[

3∑

o=1

(

k∑

l=0

(clo − dlo)ψl(t)
)2

]1/2

.

The metric ρ computes the Euclidean distance between

corresponding points along the two tracts at each t. Given
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Fig. 2. The within-subject average tract (red) of 2149 fibers. 2149 fiber
tracts are subsampled to show few selective tracts (blue). The average
tract is obtained by averaging the Fourier coefficients of 2149 cosine
representations.

a fiber consisting of n tracts η1, · · · , ηn within a subject,

the average tract η̄ is obtained by averaging the coefficients

within the corresponding basis. Then we define the tract

concentration map C as

C(η1, · · · , ηn) =

n∑

i=1

1

ρ(ηi, η̄)
.

The value of C increases as tracts get more clustered. The

concentration map C is a function of the parameter t and can

be projected along the average tract η̄. We can compute the

average of the 74 average tracts by averaging the coefficients

of the average tracts. We have constructed the two sample

t-statistic (control - autism) using 74 C-values and projected

the statistic on the population average tract in the third

image in Figure 3. We have detected the higher concentration

of fibers in control subjects in the left hemisphere (t-stat

1.79, p-value 0.078). Autistic subjects show abnormal brain

lateralization effect in fibers passing through the splenium.

IV. DISCUSSION

Although the cosine representation is efficient for normal-

izing and averaging tracts, unfortunately it is not translation,

rotation and scale invariant. This might be a reason why the

resulting signal is a bit weak (p-value < 0.078). One simple

way of obtaining translation, rotation and scale invariant

representation is to project white matter fiber tracts onto a

unit sphere. Consider directional vectors vi = pi − pi−1

with the convention v1 = p1. The vectors vi contain all the

necessary information to reconstruct the original tract.

The advantage of using the spherical projection method

is that it offers a translation, rotation and scale invariant

tract representation. Two tracts with the identical shape but

at different positions will be identically represented as the

same spherical curve. The translation information is stored

in v1 value, which should be stored separately.

Since vi are unit vectors (except v1) in our tractography

algorithm [13], they are all in S2. For a general case, which

will likely happen for other tractography algorithms, we

project vi onto S2 via the spherical projection P:

P : vi → wi =
vi

‖vi‖
.

Fig. 3. Each streamtube is the average of tracts passing through a ball
of 5mm radius around the splenium in a subject. White matter fibers in
controls (blue) are more clustered together with smaller spreading compared
to autism (red). Thick streamtube at the bottom right image is the population
average tract of all 74 subjects. Based on the fiber concentration map, we
constructed t-statistic and the corresponding p-value.

wj defines control points for a spherical curve. The spherical

curves can be parameterized using the cosine representation

ζo(tj) =

k∑

l=0

cloψl(tj). (5)

However, directly solving for each coordinate ζo will

violate the quadratic constraint that the spherical curve has

to be embedded on S2, i.e.

3∑

o=1

[

k∑

l=0

cloψl(tj)
]2

= 1. (6)

This is easily seen from Figure 4, in which the degree 10

representation is visibly not embedded in S2. The average

absolute error for reconstruction is relatively large for low

degree due to the fact that the representation is no longer

embedded in S2. Note that at degree 30, the average abso-

lute error is small enough, i.e. 0.0153mm, to be used for

subsequent modeling.

The spherical projection based representation can not be

obtained in a straightforward fashion and requires solving

three least squares problem simultaneously with the quadratic

constraint (6) that relates the three equations (5). We will not

consider this issue in this paper and leave it for a future study.

Another possible reason for the weak signal might be the

improper choice of the fiber concentration map C. Although

C increases as tracts get more clustered, it may not be a

proper metric for separating the groups. Possibly a better

metric would be to use the inverse of the sample variance,

i.e.

C(η1, · · · , ηn) =
n − 1

∑n

i=1 ρ
2(ηi, η̄)2

.
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Fig. 4. Left: a single white matter fiber tract passing through the splenium of the corpus callosum. Middle: the cosine representation of the spherical
projection of tracts at degree 10 and 30. The error plot displays the average reconstruction error in millimeter (vertical) vs. degree (horizontal) in the
spherical projection method.

This new metric is normalized by the total number of

tracts accounting for variable number of tracts for different

subjects.
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