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Abstract— Quantitative in-line X-ray phase-contrast tomog-
raphy methods seek to reconstruct separate images that depict
an object’s absorption and real-valued refractive index distri-
butions. They hold great promise for biomedical applications
due to their ability to distinguish soft tissue structures based
on their complex X-ray refractive index values. In this work,
we investigate the second-order statistical properties of images
in phase-contrast tomography and describe how they are
distinct from those associated with conventional absorption-
based tomography.

I. INTRODUCTION

In-line phase-contrast tomography methods [1]–[5] have

been developed that produce estimates of the three-

dimensional (3D) complex-valued refractive index distribu-

tion of an object. Because of its advantages over conventional

radiography, X-ray phase-contrast imaging methods [6], [7]

are being actively developed for biomedical imaging appli-

cations [8]–[10].

Phase-contrast tomography can be interpreted as a two

step process. Quantitative in-line phase-contrast imaging

methods, operating in planar-mode at a given tomographic

view angle, can reconstruct separate images that depict the

object’s projected absorption and real-valued refractive index

distributions, which reflect two distinct and complementary

intrinsic object properties. These images can be determined

by use of Fourier-based reconstruction formulas [11], [12].

Subsequently, these planar images computed at a collection

of view angles are interpreted as tomographic projections

from which estimates of the 3D absorption and refractive

index distributions are reconstructed.

The statistical properties of conventional X-ray computed

tomography (CT) have been systematically explored [13]–

[15] in previous studies. However, the reconstructed images

in phase-contrast tomography remain largely unexplored. An

understanding of the second-order statistical properties of

the reconstructed images is important for optimizing system

and algorithm designs using task-based measures of image

quality [16]. In this work, the covariance of the images

reconstructed in phase-contrast tomography are investigated.

II. IMAGING MODEL

We consider the canonical in-line measurement geometry

shown in Fig. 1. A rotated Cartesian coordinate system

~r = (x,yr,zr) is related to a reference system ~r = (x,y,z)

C.-Y. Chou is with the Department of Bio-Industrial Mecha-
tronics Engineering, National Taiwan University, Taipei, Taiwan
chengying@ntu.edu.tw

M. A. Anastasio is with the Department of Biomedical Engineering,
Medical Imaging Research Center, Illinois Institute of Technology, Chicago,
IL 60616, USA anastasio@iit.edu

Fig. 1. The measurement geometry of in-line X-ray phase-contrast imaging.

as yr = ycosθ + zsinθ and zr = zcosθ − ysinθ , where

θ denotes the tomographic view angle that is measured

from the positive y-axis. The axis of tomographic scanning

corresponds to the x-axis. A time-harmonic scalar plane-

wave Ui with wavelength λ , or wavenumber k ≡ 2π
λ , prop-

agates along the positive zr-axis and irradiates an object.

The object is characterized by its complex-valued refractive

index distribution n(~r) ≡ 1− δ (~r)+ jβ (~r), where δ (~r) and

β (~r) describe the refractive and absorption properties of the

object. The intensity of the transmitted wavefield is recorded

on two or more parallel detector planes of constant-zr, which

are spanned by the detector coordinates (x,yr). Tomographic

scanning is performed by simultaneously rotating the plane-

wave source and detector about the x-axis. The tomographic

view angle θ will be suppressed in the equations below.

On the contact plane behind the object, the transmitted

wavefield is given by

Ut(x,yr,z) = exp[−A(x,yr)+ jφ(x,yr)]Ui, (1)

where A(x,yr) and φ(x,yr) define the object’s projected X-

ray attenuation and refractive, i.e., phase, properties as:

A(x,yr) = k

∫
dz β (~r), (2)

and

φ(x,yr) = −k

∫
dz δ (~r). (3)

The quantities A(x,yr) and φ(x,yr), computationally deter-

mined at a collection of view angles, can be interpreted as the

raw projection data corresponding to the 3D quantities β (~r)
and δ (~r). To determine A(x,yr) and φ(x,yr) for an arbitrary

object, measurements of the transmitted wavefield intensity

on two distinct detector planes are generally required. This

task is known as phase retrieval.
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III. STATISTICAL PROPERTIES OF

RECONSTRUCTED IMAGES

Let Im(x,yr) denote the wavefield intensity recorded on

the detector plane z = zm, and let Ĩm(u,vr) denote its two-

dimensional (2D) Fourier transform with respect to x and yr.

Here (u,vr) denote the spatial frequency components that are

conjugate to the detector coordinates (x,yr). Similarly, we

let Ã(u,vr) and φ̃(u,vr) denote the 2D Fourier transforms of

A(x,yr) and φ(x,yr).

A. Planar images

In near Fresnel zone, the Fourier components of the

estimated attenuation and phase functions have second-order

statistical properties that behave as

Cov
[
Ã(u,vr,θ), Ã(u′,v′r,θ)

]

∝
Cov[Ĩs(u,vr;zm), Ĩs(u

′,v′r;zm)]+Cov[Ĩs(u,vr;zn), Ĩs(u
′,v′r;zn)]

(zm − zn)2
,

(4)

and

Cov
[
φ̃(u,vr,θ), φ̃(u′,v′r,θ)

]

∝
Cov[Ĩs(u,vr;zm), Ĩs(u

′,v′r;zm)]+Cov[Ĩs(u,vr;zn), Ĩs(u
′,v′r;zn)]

λ 2(zm − zn)2 f 2 f ′2
,

(5)

where Ĩs(u,vr;zm) denotes the Fourier transform of

Is(x,yr;zm), Is(x,yr;zm) = Im(x,yr)− 1, f 2 ≡ u2 + v2
r , f ′2 ≡

u′2 +v′2r , and m 6= n. From knowledge of these second-order

statistics, the covariance of the reconstructed tomographic

images can be determined as described next.

B. Tomographic images

Estimates of β (x,y,z) and δ (x,y,z) can be determined

by use of the parallel-beam filtered backprojection (FBP)

algorithm as

β (~r) =
∫ π

0
dθ F

−1
2

{ |vr|

Dm,n

[
sin(πλ zm f 2)Ĩs(u,vr;zm)

−sin(πλ zn f 2)Ĩs(u,vr;zn)
]}∣∣∣

yr=ycosθ+zsinθ
, (6)

and

δ (~r) =
∫ π

0
dθ F

−1
2

{ |vr|

Dm,n

[
cos(πλ zn f 2)Ĩs(u,vr;zm)

−cos(πλ zm f 2)Ĩs(u,vr;zn)
]}∣∣∣

yr=ycosθ+zsinθ
, (7)

where F
−1
2 ≡

∫∫
∞ dudvr exp( j2π(ux + vryr)) is the two-

dimensional (2D) inverse Fourier transform operator, and

Dm,n ≡ 2sin[πλ f 2(zm − zn)].

It can be verified that the covariance of the reconstructed

estimate of δ (x,y,z) can be computed as

Cov[δ (~r),δ (~r′)] =
∫ π

0
dθ

∫ ∞

−∞
dvr|vr|e

j2π[ux+vr(ycosθ+zsinθ)]

×
∫ ∞

−∞
dv′r|v

′
r|e

− j2π[u′x′+v′r(y
′ cosθ+z′ sinθ ′)]

×Cov
[
φ̃(u,vr,θ), φ̃(u′,v′r,θ)

]
. (8)

A similar expression can be derived for the covariance of

the reconstructed estimate of β (x,y,z), which involves the

quantity Cov
[
Ã(u,vr,θ), Ã(u′,v′r,θ)

]
.

IV. NUMERICAL RESULTS

Computer simulation studies were conducted to investigate

the second-order statistical properties of in-line X-ray phase-

contrast imaging. A monochromatic X-ray plane-wave with

wavelength λ = 0.8265×10−10 m was assumed to propagate

along the positive zr direction and irradiate an object. A

numerical phantom comprised of 2 uniform ellipsoids was

employed to represent the object’s complex-valued refrac-

tive index distribution n(~r). From knowledge of the object,

the transmitted wavefield and the subsequent intensity data

were determined on two distinct detector planes behind the

object. Noisy version of the intensity data were computed

by generating realizations of uncorrelated Gaussian random

processes with the variance σ2 = 10%. Tomographic data

were formed by repeating the computation at 180 evenly

spaced view angles θ over the interval [0,180◦).

Subfigures (a) and (b) of Fig. 2 display the covariance

estimates of the projected phase and projected absorption

images. As predicted in (4) and (5), the pole at zero fre-

quency of the Fourier covariance properties for the phase

estimates results in very different covariance properties than

that of absorption estimates. The second-order statistical

properties of the reconstructed estimates of β (~r) and δ (~r)
were computed by use of (8) and are displayed in Fig.

2 (c) and (d). The degree of the noise correlation in the

tomographic phase images is reduced, due to the mitigation

of the zero-frequency pole by the ramp filter in the parallel-

beam FBP algorithm.

V. SUMMARY

In this work, we investigated the statistical properties of

the reconstructed images in X-ray phase-contrast tomog-

raphy. Specifically, we derived analytical expressions for

the covariance of the reconstructed 3D absorption [β (~r)]
and real- valued refractive index [δ (~r)] distributions. Our
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Fig. 2. The covariance maps (a) Cov{φ(x,yr),φ(0,0)}, (b)
Cov{A(x,yr),A(0,0)}, (c) Cov{δ (0,y,z),δ (0,0,0)}, and (d)
Cov{β (0,y,z),β (0,0,0)}

results reveal that the reconstructed estimate of δ (~r) contains

significant image correlations that are not present in the

reconstructed estimate of β (~r) or a conventional CT image.

The effect of these image correlations on signal detectability

remains an interesting and important topic for future re-

search.

VI. ACKNOWLEDGMENTS

This work was supported in part by NSF CAREER Award

0546113, and by National Science Council under grant No.

NSC 97-2221-E-002-001-MY2

REFERENCES

[1] S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany,
A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and
microtomography,” Optics Express, vol. 11, no. 19, pp. 2289 – 2302,
2003.

[2] A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase
tomography,” Optics Communications, vol. 175, no. 4, pp. 329–336,
2000.

[3] A. V. Bronnikov, “Theory of quantitative phase-contrast computed
tomography,” Journal of the Optical Society of America A: Optics

and Image Science, and Vision, vol. 19, no. 3, pp. 472 – 480, 2002.

[4] P. Cloetens, W. Ludwig, E. Boller, L. Helfen, L. Salvo, R. Mache, and
M. Schlenker, “Quantitative phase-contrast tomography using coherent
synchrotron radiation,” in Developments in X-ray Tomography III,
Proceedings of the SPIE, vol. 4503, 2002, pp. 82–91.

[5] P. Spanne, C. Raven, I. Snigireva, and A. Snigirev, “In-line hologra-
phy and phase-contrast microtomography with high energy x-rays,”
Physics in Medicine and Biology, vol. 44, no. 3, pp. 741–749, 1999.

[6] W. Thomlinson, P. Suortti, and D. Chapman, “Recent advances in
synchrotron radiation medical research,” Nuclear Instruments and

Methods in Physics Research A, vol. 543, pp. 288–296, 2005.
[7] R. A. Lewis, “Medical phase contrast x-ray imaging: current

status and future prospects,” Physics in Medicine and Biology,
vol. 49, no. 16, pp. 3573–3583, 2004. [Online]. Available:
http://stacks.iop.org/0031-9155/49/3573

[8] E. F. Donnelly, R. R. Price, and D. R. Pickens, “Characterization of
the phase-contrast radiography edge-enhancement effect in a cabinet
x-ray system,” Medical Physics, vol. 30, pp. 2292–2296, 2003.

[9] S. Fiedler, A. Bravin, J. Keyrilainen, M. Fernandaz, P. Suortti, ,
W. Thomlinson, , M. Tenhenun, P. Virkkunen, and M. Karjalainen-
Lindsberg, “Imaging lobular breast carcinoma: comparision of syn-
chrotron radiation CT-DEI technique with clinical CT, mammography
and histology,” Physics in Medicine and Biology, vol. 49, pp. 1–15,
2004.

[10] F. Arfelli, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. D.
Palma, M. D. Michiel, M. Fabrizioli, R. Longo, R. H. Menk, A. Olivo,
S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, M. Ratti,
L. Rigon, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati, “Mam-
mography with synchrotron radiation: Phase-detection techniques,”
Radiology, vol. 215, pp. 286–293, 2000.

[11] T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins,
“Linear algorithms for phase retrieval in the Fresnel region,” Optics

Communications, vol. 231, pp. 53–70, 2004.
[12] D. M. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and

M. Kitchen, “Quantitative phase retrieval using coherent imaging
systems with linear transfer functions,” Optics Communications, vol.
234, pp. 87–105, 2004.

[13] K. M. Hanson and D. P. Boyd, “The characteristics of computed
tomoraphic reconstruction noise and their effect on detectability,”
IEEE Transaction on Nuclear Science, vol. 25, pp. 160–163, 1978.

[14] R. F. Wagner and D. G. Brown, “Unified SNR analysis of medical
imaging systems,” Physics in Medicine and Biology, vol. 30, no. 6,
pp. 489–518, 1985. [Online]. Available: http://stacks.iop.org/0031-
9155/30/489

[15] M. F. Kijewski and P. F. Judy, “The noise power spectrum of CT
images,” Physics in Medicine and Biology, vol. 32, pp. 565–575, 1987.

[16] H. Barrett and K. Myers, Foundations of Image Science. Wiley Series
in Pure and Applied Optics, 2004.

6650


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

