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ABSTRACT

The rotational symmetry of point spread function (PSF) is
common for many imaging systems such as optical micro-
scopes, cameras, astigmatism corrected electron microscopes,
and etc. In 2-D deconvolution problem, we showed that an
exact PSF estimation from a single measured image on a flat
background is possible by exploiting the circular symmetry.
This paper extends the idea to 3-D blind deconvolution prob-
lem. More specifically, we show that the exact recovery of
3-D PSF is possible from a single set of z-stack images if the
PSF of the microscope has a cylindrical symmetry and there
exists enough working distance to cover the volumetric sam-
ple from top to bottom. The resulting algorithm allows an
accurate computational optical sectioning of biological speci-
men from z-stack images using brightfield or fluorescence mi-
croscopes without separate PSF measurements. Experimental
results confirm our theory.

Index Terms— 3-D blind deconvolution, subspace method,
block-Toeplitz matrix

1. INTRODUCTION

Blind image deconvolution is termed for identification and
correction of a point spread function (PSF) of an image ac-
quisition device based on measured data under limited prior
knowledge of PSF. Even though this problem may be cate-
gorized as a classical one, novel solutions have been contin-
uously proposed. In this paper, we show that the cylindrical
symmetry of 3-D point spread function (PSF) in optical mi-
croscopy is an important clue for accurate blind deconvolu-
tion.
As described in our previous 2-D blind deconvolution

works [1], this idea was inspired by multichannel blind image
deconvolution which allows the exact recovery of unknown
blur kernels when multiple measurements of an identical
scene through distinct blur channels are available [2]. How-
ever, in many experimental situations, it is difficult to obtain
multiple distinct blur measurements of an identical scene.
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For example, in fluorescence microscopy, the fluorescence
intensity could vary due to fast physiological changes and
photobleaching between the multiple acquisitions.
For 2-D blind deconvolution problem, we showed that the

exact recovery of PSF is still possible using a non-iterative
algorithm from single channel measurement when the PSF
has radial symmetry and the support region of measurement
is surrounded by a flat background [1]. By Fourier-slice the-
orem, the single-input single-output (SISO) problem in spa-
tial domain can be converted into a multiple-input multiple-
output (MIMO) problem in Radon domain. The unknown
blur kernel is then estimated from projection data at distinct
views by the subspace method without any iterative step [3].
However, the theory fails when we can only measure a part of
true image, which is common in practice [2].
In this paper, we extend the 2-D theory to 3-D deconvolu-

tion algorithm by exploiting the cylindrical symmetry of the
3-D PSF function. Unlike the 2-D cases, the unknown PSF
can be shown to be exactly estimated even from partial data
measurements as long as there is no information loss in ax-
ial direction, which is the case when the working distance of
microscope is long enough to cover the 3-D sample from top
to bottom. The exactness of estimated solution by subspace
method is due to the block Toeplitz structure of 2-D convolu-
tion matrix, as will be shown in this paper. Since a PSF of mi-
croscopy is usually cylindrically symmetric and 3-D decon-
volution is an important tool for computational optical sec-
tioning, our theory may have significant impact in many real
applications.

2. NOTATION

Two lettersM and N are reserved for expressing the number
of rows and columns of a matrix, respectively. The letterK is
reserved for the number of projection angles in Radon trans-
form. The letterH ∈ R

m×n stands for a matrix that contains
2-D shift invariant PSF. The row direction filters are {hi}

n
i=1,

and the column directional filters are denoted by {Hj}
m
j=1.

Similar to the notation by Harikumar and Bresler [2], we
define 1-D convolution matrices. CMI

{hi} denotes 1-D full
convolution matrix of which blur kernel is hi ∈ R

m and the
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number of row and column vectors isMO = MI +m−1 and
MI , respectively. More specifically, for a given input signal
lengthMI , a full 1-D convolution matrixCMI

{hi} is defined
as

CMI
{hi} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hi(1) 0
...

. . .

hi(m)
. . .

. . . hi(1)
. . .

...
0 hi(m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where hi(k) denotes the k-th elements of hi.
We define 2-D convolution matrices in similar ways.

Without loss of generality, there exist three categories of 2-D
convolution matrices. First, full data acquisition in both row
and column directions; second, full in row and chopped in
column direction, respectively; finally, chopped in both di-
rections. The case in which the row direction is chopped but
full in column direction can be converted to the second case
by transposing the image. Now, the convolution matrix for
our interest is the second case given by⎡
⎢⎢⎢⎢⎣

CMI
{hn} · · · CMI

{h1} 0

. . .
. . .

. . .

. . .
. . .

. . .

0 CMI
{hn} · · · CMI

{h1}

⎤
⎥⎥⎥⎥⎦

(2)
where the output image dimensions are given byMO = MI+
n − 1 and NO = NI − n + 1.

3. PROBLEM FORMULATION

In most of the computationally optical sectioning techniques,
the PSF is considered shift-invariant and cylindrical symmet-
ric. More specifically, let r ∈ R

3 denote the 3-D Cartesian
coordinate. Then, for a true volume x(·), blurred measure-
ment y(·) filtered by a 3-D PSF h2D(·) is then described by a
3-D convolution:

y(r) =
(
h3D ∗∗∗ x

)
(r) + n(r), (3)

where ∗∗∗ denotes the 3-D convolution operation and n(·) is
the additive noise. This can be represented in Fourier domain
as follows:

Y (kx, ky, kz) = H3D(kx, ky, kz)X(kx, ky, kz)+N(kx, ky, kz),
(4)

where (kx, ky, kz) denote 3-D Cartesian coordinate in Fourier
domain, Y (·),H3D(·), X(·), and N(·) denotes the 3-D
Fourier transform of measurement, PSF, true z-stack, and
noise, respectively. We can derive an equivalent equation on
the cylindrical coordinate:

Y (kr,Θ, kz) = H3D(kr,Θ, kz)X(kr,Θ, kz)+N(kr,Θ, kz),
(5)

where kr = (k2
x + k2

y)
1

2 and Θ = tan−1 ky

kx

, respec-
tively. By employing the cylindrical symmetry of a PSF,
i.e., H3D(kr,Θ, kz) = H2D(kr, kz), the 3-D image convo-
lution is then reduced to a separable 2-D convolution at each
Θ:

yΘ(r, z) = (h2D ∗∗ xΘ)(r, z) + nΘ(r, z), (6)

where ∗∗ denotes the 2-D convolution operation, yΘ(·), xΘ(·),
and nΘ(·) denotes inverse Fourier transform pair of Y (·), X(·),
and N(·) for a given angle Θ, respectively. Therefore, sim-
ilar to 2-D blind deconvolution with circular symmetry [1],
the 3-D SISO problem in spatial domain can be translated
into 2-D MIMO problem through a single blur kernel h2D(·)
in (r, z)-plane when we consider each yΘ(r, z) as a 2-D
measurement.
Especially important acquisition scheme is the case where

the axial data along z-direction is full whereas the measure-
ment is partial along lateral direction. More specifically, in
optical microscopy with sufficient working distance, we can
obtain the additional out-of-focus z-slice images above and
below the actual physical supports of the specimen. This ad-
ditional acquisition makes the measurements full data along
z-direction even though the measurements is still partial along
r-direction. More specifically, in discrete (r, z)-plane, the
measured plane Y(i) corresponding to the i-th projection an-
gle can be described as the 2-D chopped convolution between
the unknown blur kernelH = [h1, · · · ,hn] ∈ R

m×n and the
true imageX(i) = [x1, · · · ,xNI

] ∈ R
MI×NI as follows:

VEC{Y(i)} = C
f,c

(MI ,NI){H} · VEC{X(i)} (7)

4. MAIN RESULTS

In this section, we introduce a sequence of results that leads to
the exact recovery condition for 3-D deconvolution problem
from partial data. Due to the page limitation, all the proof is
skipped in this paper.

Lemma 1 The 2-D convolution matrix C
f,c

(MI ,NI){H} for
partial data case has full column rank for genericH ∈ R

m×n

if
NI

MI
≥

n − 1

m − 1
. (8)

Physically, the necessary condition NI/MI ≥ (n −
1)/(m− 1) for full rankness is very mild and easy to meet in
optical microscopy experiments. More specifically, the speci-
men dimension along lateral direction is usually significantly
larger than that of axial one. Therefore, nearly every acquisi-
tion scheme in optical microscopy can satisfy the necessary
condition NI/MI ≥ (n − 1)/(m − 1).
For full data case both in axial and lateral directions, the

cross relationship does hold between each (r, z) projections
and measurements, similar to multichannel blind deconvo-
lution problem in Harikumar and Bresler [2]. However, the
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unknowns in partial data problem are the projections images
whose dimension is bigger than the measurements; hence, the
cross relationship does not hold in our problem setup.
Therefore, the direct estimation of projection images for

the partial data case is hopeless; hence, we are interested in
estimating the filter first, and then estimate the images using
non-blind deconvolution techniques. We first need to exploit
the following properties of the block-Toeplitz matrix.

Lemma 2 LetY (1 : MO, i : j) denote theMO× (j− i+1)
submatrix ofY. Then, we have

VEC{Y (1 : MO, i : j)}

= C
f,c

(MI ,S+n−1){H} · VEC{X (1 : MI , i : j + n − 1)} ,
(9)

whereMI = MO − m + 1 and S = j − i + 1, respectively.

Thanks to Lemma 2, we have the following relationship

ΥY
S =

[
SS{Y

(1)}, · · · ,SS{Y
(K)}

]
= C

f,c

(MI ,S+n−1){H} ·
[
SS{X

(1)}, · · · ,SS{X
(K)}

]
� C

f,c

(MI ,S+n−1){H} · ΥX
S (10)

where the matrix ΥY
S

∈ R
MOS×(NO−S+1)K and ΥX

S
∈

R
MIS×(NI−S+1)K denotes the measurement and unknown
projection matrices, respectively; and SS{Y

(i)} which
constructs a collection of vectorized submatrices Y(i)(1 :
MO, i : i + S − 1), i = 1, · · · , NO − S + 1.

Lemma 3 C
f,c

(MI ,S+n−1){H} and C
f,c

(MI ,S+n−2){H} have
full column rank for genericH as long as S ≥ MI−m+1

m−1 (n−
1) + 1.

Now, we need to check whether a set of basis vectors
that construct the subspace of COL{Cf,c

(MI ,S+n−1){H}} are
known. Lemma 4 provides the uniqueness of the column
space.

Lemma 4 Let NI denote any column dimension of the input
image such that the convolution matrix Hc � C

f,c

(MI ,NI){H}

and C
f,c

(MI ,NI−1){H} have full rank. For another blur kernel
H′ with the same dimension asH, let the corresponding con-
volution matrix be defined as H′

c � C
f,c

(MI ,NI){H
′}. Then,

H′
c shares the same column space with Hc if and only if the

corresponding blur kernels are proportional, i.e., H′ = αH

for some scalar α ∈ R.

We now define a simplified notation:

Hc � C
f,c

(MI ,S+n−1){H} . (11)

Under noiseless case, we have the following relationship:

ΥY
S

(
ΥY

S

)T
= HcΥ

X
S

(
ΥX

S

)T
H

T

c (12)

In order to obtain the uniqueness results, we also need the
following assumption.

Assumption 1 The matrixΥX
S

(
ΥX

S

)T has full rank.

Assumption 1 also implies that the unknown projections has
sufficient angular disparity. The more irregular the specimen
are, the easier to meet the assumption. Now, let us consider an
eigen-decomposition ofΥY

S

(
ΥY

S

)T . Let ν denotes the cardi-
nality of its null-space and g(k) ∈ R

MOS×1, k = 1, · · · , ν de-
notes the corresponding eigenvectors. Since the column space
of Hc spans ΥS, we can easily show the following orthogo-
nality relationship:(

g(k)
)T

Hc = 0 ⇔
(
g(k)

)T

HcH
T

c g(k) = 0 . (13)

for all k = 1, · · · , ν. Hence, the resulting optimization prob-
lem for estimating 2-D PSFH in (r, z)-plane is given as:

argminH
ν∑

k=1

(
g(k)

)T

HcH
T

c g(k). (14)

Furthermore, g(k) =

[(
g

(k)
1

)T

, · · · ,
(
g

(k)
S

)T
]T

, where

g
(k)
j ∈ R

MO×1 denotes a subvector of g(k). Therefore,
Eq. (14) can be simplified using the following commutative
property of Toeplitz structure in CMI

{hj}
T :

CMI
{hj}

T g
(k)
i =

(
G

(k)
i

)T

hj , (15)

whereG
(k)
i is given by⎡

⎢⎢⎢⎢⎣
g

(k)
i (1) g

(k)
i (2) · · · g

(k)
i (MI)

g
(k)
i (2) g

(k)
i (3) · · · g

(k)
i (MI + 1)

...
...

. . .

g
(k)
i (m) g

(k)
i (m + 1) · · · g

(k)
i (MI + m − 1)

⎤
⎥⎥⎥⎥⎦ .

Using Eq. (15), we have

H
T

c g(k) =
(
G(k)

)T

VEC{H} (16)

where G(k) is defined as⎡
⎢⎢⎣

0 · · · G
(k)
1 · · · G

(k)
S

... . .
. ... . .

.
. .

. ...

G
(k)
1 · · · G

(k)
n · · · G

(k)
S 0

⎤
⎥⎥⎦ . (17)

Therefore, the final optimization problem is reduced to

argmin||VEC{H}||2=1VEC{H}T

(
ν∑

k=1

G(k)
(
G(k)

)T

)
VEC{H}.

(18)
The solution of (18) is an eivenvector corresponding a min-
imum eigenvalue of

∑ν

k=1 G
(k)

(
G(k)

)T . Hence, we finally
has the following identifiability condition for filter in partial
data problem:
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Proposition 1 (Identifiability of Filter) Let S ≥ MI−m+1
m−1 (n−

1) + 1. Suppose, furthermore, Assumption 1 is satisfied and
a generic filter H has unit norm. Then, the unknown generic
filterH can be uniquely estimated using Eq. (18).

5. IMPLEMENTATION

We assume that the support size of PSF is known a priori.
However, this should be estimated in practice. There exist
several methods for filter size estimation such as eigenvalue
based techniques [4] and residual based techniques [2]. A de-
tailed discussion of filter size estimation is beyond the scope
of this paper, and in this study, we simply chose the filter size
by trial and error.
In contrary to our previous algorithm [1] that employs the

Radon domain restoration, this paper applies a spatial domain
restoration to reduce computation burden of inverse Radon
transform especially for large images such as in real exper-
iments. To do this, the 3-D PSF in Cartesian coordinate is
interpolated from the estimated 2-D PSF in (r, z)-plane by ex-
ploiting the cylindrical symmetry. Finally, we use a iterative
3-D non-blind estimation method that maximizes the likeli-
hood of the resulting image under noise, which is provided by
MATLAB image processing toolbox (MathWorks, Natick).

6. RESULT

We construct 3-D cylindrical symmetric PSF whose (r, z)-
plane image is as illustrated in Fig. 1(a). The ground-truth
axial and lateral section images of 3-D phantom are illustrated
in the leftmost column of Fig. 2, and the degraded image are
illustrated in the middle column of Fig. 2, respectively. The
dimension of 3-D phantom was (255 × 255 × 41). Since the
FOV does not cover the whole (x, y)-plane, it corresponds
to the partial data case. The estimated PSF in (r, z)-plane
illustrated in Fig. 1(b) was identical with the simulated PSF
even though there was information loss in (x, y)-plane.

Fig. 1. PSFs in (r, z)-plane under the partial data condition.
(a) Ground-truth PSF, and (b) estimated PSF.

In this simulation, the 3-D PSF was interpolated from 2-
D PSF and restoration results were obtained with a non-blind
deconvolution method. Due to the effect of interpolation, the
restoration result are slightly degraded, but still significantly
improved from the degraded images as illustrated in the right-
most column of Fig. 2.

7. CONCLUSION

This paper introduced an exact single channel 3-D blind de-
convolution algorithm for rotationally symmetric point spread

Fig. 2. Lateral and axial section images for partial data case.
Left column: ground-truth, center column: blurred images,
right column: restored image, respectively.

functions, which is common in optical microscopy with cir-
cular aperture. By exploiting the block Toeplitz structure of
2-D convolution matrix, we showed that the exact estimation
of cylindrical symmetric point spread function is possible as
long as there exists enough working distance in microscopy to
cover the volumetric samples from top to bottom. Experimen-
tal results demonstrated the effectiveness of our algorithms.
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