
  

  

Abstract— We propose a novel spatial spectral model for the 

reconstruction of magnetic resonance spectroscopic imaging 

(MRSI) signal. We penalize the compartmentalized spatial total 

variation norm of the signal to exploit the spatial properties of the 

metabolite peaks. The spectral signal is modeled as a sparse linear 

combination of spikes and polynomials to capture the peaks and 

baseline induced by unsuppressed water and lipids. We also use 

the high-resolution map of the magnetic field distribution within 

the slice to model the image acquisition, thus correcting for intra-

voxel line shape distortions. The spectral model enables the stable 

recovery of the signal even in challenging spatial regions, while the 

spatial model suppresses the spectral leakage from extra-cranial 

fat and inter-voxel crosstalk. We acquire the MRSI signal using 

EPSI, while the high-resolution 3-D MRI information is derived 

using Dixon scans. The reconstruction of phantom and in vivo 

MRSI data demonstrate a significant improvement in spectral 

quality and accuracy over classical MRSI schemes. 

I. INTRODUCTION 

R SPECTROSCOPIC Imaging (MRSI) is a non-invasive scheme 

that provides in vivo concentration maps of various brain 

metabolites. Since many of these metabolites play significant 

roles in brain tumor, this scheme has considerable potential in the 

clinical management of brain cancer. The routine clinical use of 

MRSI is hampered by several factors such as poor spatial and 

spectral resolution and insufficient spatial coverage. Coupled with 

the significant dynamic range in metabolite signals and the 

considerable variation of the magnetic field, the low resolution 

acquisitions results in several artifacts such as spectral leakage and 

field-map-induced line shape variations. This often makes the 

quantitative estimation of metabolite concentrations challenging. 

The main goal of this work is to overcome these challenges, thus 

obtaining accurate maps of metabolite peaks.  

Several spatially constrained reconstruction schemes were 

introduced in the past to overcome the spectral leakage. Most of 

these schemes model the spatial distribution of the metabolite 

peaks as a linear combination of few basis functions, derived using 

anatomical constraints. The limited ability of these models to 

capture the spatial variations exhibited by in vivo scans, especially 

in the context of lesions, make them ineffective in practical 

applications. The variation of the magnetic field within the spatial 

compartments also restrict the utility of these schemes. We model 

the spatial distribution of the metabolite peaks using a novel 

compartmentalized total variation penalty, where the spatial 

compartments are derived from high resolution MRI scans. 

Specifically, we penalize the 1� -norm of the finite differences of 

the signal within the spatial compartments; the finite differences 

across the compartments are omitted from the norm. This enables 

the signal to vary abruptly at the compartment boundaries, while 

being piecewise smooth within the spatial regions.  

 
R. Eslami and M. Jacob are with the Department of Biomedical 

Engineering, University of Rochester, Rochester, NY 14627 (e-mails: 

reslami@ieee.org and mathews.jacob@rochester.edu).  

This work is partially supported by the University of Rochester's 

Clinical and Translational Sciences award, Grant number U11RR024160. 

An alternate approach to minimize spectral leakage is PRESS 

volume selection or saturation bands. However, these schemes 

significantly reduce the spatial coverage, restricting the 

visualization of spectra from regions close to the brain 

surface. Most of the current schemes ignore the effect of field-map-

induced line shape variations and losses within the reconstruction, 

in the interest of a simple algorithm. However, this can lead to 

significant signal losses and line shape variations in voxels, where 

the field is significantly changing; these variations are often quite 

significant close to tumors. The ability of quantification algorithms 

to capture them is rather limited; many of the current methods omit 

these voxels from further analysis, thus reducing the spatial 

coverage.  

We propose to estimate the field map from high-resolution, 3-D 

Dixon scans and use them to compensate for these losses. To 

exploit the high-resolution information, we reconstruct the signal 

with the same grid spacing as the MRI data; the use of the spatial 

TV penalty makes the reconstructions well-posed. In spite of the 

spatial and forward models, the recovery of the spectral peaks on 

voxels with significant field variations are still challenging. The 

recovery of the spectral signal, accounting for the field map is 

analogous to deconvolution. In regions with significant variations, 

the peaks are significantly blurred, thus making the recovery ill-

posed. To further constrain the reconstruction, we model the 

spectrum as a sparse linear combination of spikes and polynomials. 

The spikes capture the metabolite peaks, while the polynomials 

enable the representation of the baseline signal. The novel spectral 

model significantly aids in the minimization of noise as well as in 

making the recovery of peaks well-posed. 

II. MRS IMAGE FORMATION 

We use the echo-planar spectroscopic imaging (EPSI) sequence 

to scan the object on a Cartesian grid. Ignoring the 1T  relaxation 

time, we model the MRSI acquisition scheme in the discrete 

domain as  
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where 0 0 02 ( )f Bω π γ= = ∆ r  represents the field map in which 

0 ( )B∆ r  is the field inhomogeneity and γ  denotes the 

gyromagnetic ratio.  

Using accompanying MRI scan [ ]q n , we propose to estimate 

the high-resolution field map and *
2T  decay. These parameters are 

estimated using the Dixon scheme, where MRI data is collected at 

multiple delay times to estimate the field map and fat/water 

concentrations.  

In this paper we consider the MRSI data ˆ[ , , ]x y fs k k k  to be at 

resolution ( , , )x y fM M N  and the water-referenced (MRI) data 

[ ]q n  at a higher resolution ( , , )x y zN N N=N . Note that we 

assumed same spectral and temporal resolution; i.e., f tN N= .  
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III. MRSI RECONSTRUCTION 

A. System Model  

To exploit the high resolution MRI priors, we propose to 

reconstruct the MRSI data at the same grid size as the MRI data. 

Thus, having the scanned MRSI data ˆ[ , , ]x y fs k k k  in one slice at 

resolution ( , , )x y fM M N , we would like to reconstruct 

[ , ] [ , , , ]f x y z fv n v n n n n=n  at a finer grid ( , )fNN , which has the 

same spatial resolution as the estimated field map and  *
2T  decay. 

As a result, considering the fact that the MR measurements are 

noisy, we need to solve 

 ˆv s ε− ≤A , (2) 

where A  indicates the forward (or system) model shown in (1).  

As explained in Section 2, in the MR scanner, inhomogeneity 

and *
2T  decay affect the desired signal in the temporal domain, 

( )fv , through a multiplication by an exponential term. Therefore, 

to implement A  we first define the operator B  as 
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where ( )fF  and ( )xyzF  denote the Fourier transform along the 

spectral and spatial dimensions, respectively. Then we express 

=A�WB  where W  makes 1̂v  the same size as the measured signal 

ŝ  by picking the center of k-space at the target size of 

( , , )x y fM M N , or 2 1ˆ ˆv v=W .  

To exploit the spatial correlation of the MRSI data and to make 

the reconstruction at a finer grid well-posed, we minimize total 

variation (TV) of [ , ]fv nn  subject to the criterion (2).  

We also constrain v  to a mask that covers the field of view Ω  

and constrain the TV norm into two regions of water ( 1Ω ) and fat 

( 2 1Ω = Ω − Ω ) using the high-resolution scan [ ]q n  in order to 

reduce spectral leakage. (Recall that we also used [ ]q n  to estimate 

the field map.) In general we can add more regions such as CSF, 

white matter, etc. Thus, we segment the field of view to K  non-

overlapping regions 
1

K

ii=
Ω = Ω∪ . 

Consequently, we propose the following minimization scheme to 

reconstruct the MRSI data v : 
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In this setting, the updated forward model is defined as 

1 Ω=A �WBM  where ΩM  denotes the masking operator to 

constrain the reconstruction to the field of view:  
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spatial constrained gradient is expressed as (definitions for y -  and 

z -gradients are similar): 
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We define the reconstruction error as ˆe sε= . We optimize the 

regularizing parameter(s) to achieve a desired reconstruction error. 

B. A New Signal Model 

A typical MRSI spectrum, however, is composed of (a) a few 

metabolite peaks and (b) a baseline due to residual water and fat 

leakage, and the existence of macromolecules. Therefore, a better 

model required to represent the MRSI signal. We propose to model 

the MRSI signal using a union of Diracs and polynomials basis 

functions ( )ϕ ψΦ = : 

 
 

base line peaks

c dv w w wϕ ψ= Φ = + , (4) 

where ( )T
c dw w w=  represents the coefficients, Iψ =  is the 

Euclidean (or Dirac) basis that efficiently captures the peaks ( dw ) 

while the polynomials ϕ  can represent the baseline. As a 

consequence, using (4), we propose the new reconstruction scheme 

as  

 { }1

2

2 1 2ˆarg min TV ( )
w

w w s w wλ λ= − + +Ω

nA �
�

� , (5) 

 
where the updated forward model is expressed as 

2 Ω= ΦA �WB M . Note that the sparsity constraint does not 
contradict the smoothness imposed by the spatial TV norm. The 
TV norm only penalizes the spatial gradients. While used alone as 
in (3), it does not constrain the signal along the frequency 
dimension. In contrast, the use of the sparse spectral model 
constrains the spectral shapes, thus making the recovery of line 
shapes in regions with significant intra-voxel distortions well-
posed. The proposed constrained model opposed to most previous 
studies [1], [3] exploits the spectral line shapes (peaks and base 
line) in the reconstruction and provides a sparse representation of 
the MRSI signal.  

Since the piece-wise smooth model is not proper for the fat 
region in Brain scans, we constrain TV norm in (5) to only the 
water region ( 1Ω ); that is we use  1TV ( )wΩ

n  instead of TV ( )wΩ

n . 

To achieve baseline decomposition with lower-degree 

polynomials, we limit their support to a region of interest (ROI) 

where we exclude the water peak.  

To represent the baseline, we employ Chebyshev polynomials of 

the first kind defined as 
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for [ 1,1]x∈ − . We define the discrete version of the polynomials 

with a support limited to [ , ]a bn nΛ =  as 
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and normalize them with their 2� -norm. Thus, we use pN  

polynomials ( 0 1pi N≤ ≤ − ) with limited support as basis 

functions of ϕ . 

As a result, we can express (4) as 

 
1

0
[ , ] [ , ] [ , ] [ ]

pN

f d f c i fi
v n w w n w i R n

−

=
= Φ = +∑n n n , 

where dw  represents the Dirac coefficients and has the same size as 

v , whereas [ , ]cw in  with size ( , )pNN  denotes the polynomial 

coefficients using polynomials [ ]iR n  of order 1pN −  and length 

fN . 

The TV norm in (5) regularizes the resulting baseline-removed 

signal dw  in order to make the line shapes and peaks uniform. This 

is not attainable by first reconstructing the MRSI signal by using 

(3) and then removing the base line from each spectral line. Note 

that the TV norm in (3) applies to the MRSI signal v , which 

includes the baseline. Subtracting the varying baseline from the 
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reconstructed v�  leads to non-uniformity in the metabolite peaks 

magnitudes in uniform regions. 

An issue in finding the proper solution in regularized 

minimization schemes is setting the appropriate regularizing 

parameters, here 1λ  and 2λ . Here we attempt to find the 

appropriate parameters to achieve a desired reconstruction error. 

Hence, we have one degree of freedom in choosing 1λ  and 2λ . In 

our experience, the parameter 2λ  plays the major role in making 

the problem well-posed. Using a smaller value of 2 10.1λ λ≈  is 

often sufficient to ensure the decomposition of v  into baseline and 

metabolites components and provide reasonable suppression of 

artifacts. 

IV. EXPERIMENTAL RESULTS  

We tested our approach for a phantom and in vivo brain data and 

compared it to the standard scheme [4] integrated with the 

Papoulis-Gerchberg (PG) algorithm [2] as well as the chemical 

shift imaging (CSI) data for the patient brain study. We acquired 

the water-suppressed MRSI data in a single 10mm-slice with 

resolution ( , , ) (64,32,256)x y fM M N =  where we used 9 

measurements to improve SNR. We chose 2secTR =  and 

40m secTE =  (echo time for the first acquisition) resulting in a 

total scan time of 10.7 min . We also acquired a water-referenced 

MRSI data at this resolution to be employed in the standard 

reconstruction scheme for comparison. We estimated the field map 

and *
2T  decay as well as the masksfrom a higher-resolution 

[ ( , , ) (128,64,4)x y zN N N = ] water data [ ]q n  scanned at the same 

volume as the MRSI scan. For our proposed reconstruction scheme 

of (5), we employed polynomials of order 7 ( 8pN = ). 

A. Uniform Phantom 

In the first experiment we used a cylindrical phantom containing 

water and three metabolites: choline (Cho), creatine (Cr), and N-

acetyl-aspartate (NAA). We intentionally selected a slice that 

included an air bubble on top to have a high inhomogeneity.  

We used the regularizing parameters 1 0.05λ =  and 2 0.002λ =  

in (5) leading to a reconstruction error of 5%e = . In addition to 

the proposed method, we also used standard reconstruction in 

which we exploit the water-referenced imaging data acquired at the 

same resolution as the MRSI data to align the peaks. Then we 

apply baseline suppression to each spectral line by fitting 

polynomials of order 7. We also apply spatial apodization at each 

frequency point fn  using a 2-D Gaussian window. 

Fig. 1(a) depicts the field map estimate of the phantom. As seen, 

the intensity variation in zn  is significant which indicates the need 

for employing a 3-D field map in the reconstruction. In Fig. 1(b) 

we demonstrated the reconstructed Cho peak map where the 

proposed method yields more uniform result. In the standard 

reconstruction at regions where the inhomogeneity is high, the 

peaks have small magnitudes close to zero; that is, the MRSI signal 

is almost lost in those regions (see Fig. 1). This observation is 

confirmed when we examine the spectra illustrated in Fig. 1(c)-(e). 

Note that the conventional reconstructions exhibit significant signal 

intensity variations in spatial regions with significant changes in 

field map. 

B. Brain In Vivo Results 

1)  Healthy Subject 

We scanned a slice of the brain of a healthy human and tested 

our scheme to reconstruct the MRSI signal. We used 1 0.05λ =  and 

2 0.002λ =  in (5), which led to a reconstruction error of 2.3%e = . 

For the standard scheme, we used PG algorithm, inhomogeneity 

correction using the water-referenced scan, baseline removal, and 

spatial apodization. We used a Gaussian window for the 

apodization resulting the error of 5.6%e = .  

Fig. 2(a) and (c) show a few reconstructed spectra at different 

locations of imaged brain using the proposed scheme and the 

standard method. While the proposed method yields high quality 

reconstructed metabolite peaks in all spectra, the reconstructed 

spectra resulting from the standard method show degraded 

(sometimes lost) peaks and very noisy line shapes. Note that the 

remaining fat leakage is comparable for both schemes. 

In Fig. 3 we demonstrated the reconstructed NAA peak using 

different schemes. The proposed method [see Fig. 3(a)] yields the 

smoothest result, which is not affected by the fat leakage. The 

standard algorithm [see Fig. 3(c)] shows less smooth result where 

we observe some oscillatory magnitude variation inside the brain 

due to fat leakage.  

For the TV reconstruction, we also see such oscillatory variation 

in Fig. 3(b). The high-magnitude boundary regions indicate high-

amplitude fat leakage in these areas. These artifacts are not 

observed in the peak reconstructed using (5), which confirms the 

use of 1� -norm as well as the new signal model to be appropriate 

for MRSI brain signals. 

2) Patient with Brain Cancer 

Finally, we scanned a patient having a tumor using the EPSI 

sequence as well as the standard CSI sequence available at Siemens 

Trio 3T MR scanner. The CSI scheme uses the PRESS volume 

selection to minimize the leakage from lipids. However, this 

restricts the imaging of voxels close to the brain. Note that many of 
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Fig. 1. (a) Field map estimate of the metabolite phantom at slice 1 and slice 4. (b) Reconstructed peak map of Cho in the phantom using the proposed 

scheme (Left) and the standard scheme (Right). The color bars show the normalized intensity variation within the phantom. (c) A few spectral lines at the 

voxels shown in (d) reconstructed with the proposed method. (e) Spectra at the same voxels constructed using the standard scheme. 
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the brain regions close to the tumor cannot be imaged with this 

scheme. Therefore, the acquired data in the CSI study is valid only 

over the 10x8 voxels shown by a box in Fig. 4(d). 

The resulting estimated field map and reconstructions are 

depicted in Fig. 4. As seen, the peak maps of the metabolites in 

both methods follow similar patterns. Note that the top row of peak 

maps of the CSI reconstruction is saturated due to fat leakage and 

thus is not valid. Lower NAA concentration and relatively higher 

Cho concentration compared to Cr indicates the tumor in the brain. 

A few spectral lines are shown in Fig. 4(c) and (e). The 

reconstructed peaks using the proposed method are more resolved 

compared to the spectra of the CSI scheme. 

V. CONCLUSION 

In this paper we proposed a new reconstruction scheme for 

MRSI data. We assumed the MRSI signal is gradient-sparse in the 

spatial domain and hence applied TV-norm minimization. We also 

proposed a better signal model for the MRSI signal based on the 

union of Diracs and polynomials resulting in a sparser signal. We 

applied the 1� -norm of the decomposed signal to make the 

problem well-posed and to take advantage of the spectral sparsity. 

Through several experiments including phantom and in vivo 

studies we demonstrated improved reconstructions over traditional 

schemes when using the proposed approach. 
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Fig. 2. (a) A few reconstructed spectral lines at voxels shown in (b) using the proposed method. (c) Spectra at the same voxels reconstructed with the 

standard algorithm. 

                                       (a)                                        (b)                        (c) 

Fig. 3. Reconstructed peak map of NAA using: (a) proposed method 

[given in (5)], (b) TV reconstruction [given in (3)], and (c) standard 

method. For cases (b) and (c) baseline removal is applied after 

reconstruction. Magnitude is clipped for better visualization. 

                 (a)          (b)                                    (c) 

Fig. 4. (a) Estimated field map at four slices. The shown values are clipped 

between -80 and 80Hz. (b) Reconstructed peak maps of Cho, Cr, and NAA 

using the proposed method (Top row) and CSI method (Bottom row; 

corresponding to the same region indicated by a box in the top row). 

(c) A few spectral lines at voxels shown in (d) using the proposed method. 

(e) Spectra at the same voxels using the CSI scheme. 
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