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Abstract— Architectural distortion is a commonly missed
sign of breast cancer. This paper investigates the detection
of architectural distortion, in mammograms of interval-cancer
cases taken prior to the diagnosis of breast cancer, using Gabor
filters, phase portrait analysis, fractal dimension, and texture
analysis. The methods were used to detect initial candidates
for sites of architectural distortion in prior mammograms
of interval-cancer and also normal cases. A total of 4212
regions of interest (ROIs) were automatically obtained from
106 prior mammograms of 56 interval-cancer cases, including
262 ROIs related to architectural distortion, and from 52
prior mammograms of 13 normal cases. For each ROI, the
fractal dimension and Haralick’s texture features were com-
puted. Feature selection was performed using stepwise logistic
regression and in terms of the area under the receiver operating
characteristics (ROC) curve (AUC). The best results achieved,
in terms of AUC, are 0.75 with the Bayesian classifier, 0.71 with
Fisher linear discriminant analysis, and 0.76 with an artificial
neural network (ANN) based on radial basis functions (RBF).
Analysis of the performance of the methods with free-response
receiver operating characteristics indicated a sensitivity of 0.80
at 10.5 false positives per image.

I. INTRODUCTION

Early detection of breast cancer is crucial if treatment is

to be successful. Mammography is the best available tool for

early detection of breast cancer. However, the sensitivity of

screening mammography is influenced by image quality and

the radiologist’s level of expertise. Computer-aided diagno-

sis (CAD) could help in increasing the detection accuracy by

providing a “second opinion” to the radiologist, and could

be as effective as double reading [1].

Architectural distortion is the third most common mam-

mographic sign of non-palpable breast cancer, but due to its

subtlety and variability in presentation, it is often missed dur-

ing screening [2]. CAD techniques and systems are effective

in detecting masses and microcalcifications [3]. However,

only a few works have been reported on the detection

of architectural distortion [4], [5], [6], [7], [8], and CAD

systems have been found to fail in detecting architectural

distortion with an adequate level of accuracy [3].

Ayres and Rangayyan [4] applied Gabor filters and phase

portrait maps to characterize the oriented patterns associated

with architectural distortion. Matsubara et al. [5] used math-

ematical morphology to detect architectural distortion around
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the skin line and a concentration index to detect architectural

distortion within the mammary gland. Guo et al. [6] used

five different methods to estimate the fractal dimension (FD)

and a support vector machine (SVM) for classification of

masses and architectural distortion. Rangayyan et al. [7] used

phase portraits, FD, and texture features for the detection

of architectural distortion in prior mammograms of screen-

detected cancer. Sameti et al. [8] used six selected texture

and photometric features computed from manually marked

regions on the last screening mammograms prior to the

detection of breast cancer.

In this paper, we present methods for the detection of sites

of architectural distortion in prior mammograms of interval-

cancer cases in a screening program. The methods are based

upon Gabor filters, phase portrait modeling, fractal analysis,

and Haralick’s texture features.

II. METHODS

After performing the segmentation of the breast portion

in a given mammogram, the method for the detection of

architectural distortion consists of the following stages: ex-

traction of the orientation field using Gabor filters, selection

of curvilinear structures (CLS), filtering and downsampling

of the orientation field, modeling of phase portraits, and

detection of potential sites of architectural distortion [4], [7].

A. Gabor Filters for the Detection of Oriented Patterns

The real Gabor filter kernel oriented at the angle θ = −π/2
is given by [9], [10]

g(x, y) =
1

2πσxσy

exp

[

−
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2

(

x2

σ2
x

+
y2

σ2
y

)]

cos(2πfx). (1)

Kernels at other angles can be obtained by rotating this

kernel. In the present work, the parameters in Equation 1,

namely σx, σy , and f , were derived using the design rules

proposed by Rangayyan and Ayres [10]. A set of 180 kernels

with angles spaced evenly over the range [-π/2, π/2] was

used. For each image, a magnitude response and orientation

field were obtained by using the response and angle of the

Gabor filter with the highest response at each pixel. The CLS

of interest (spicules and fibroglandular tissue) were separated

from confounding structures (edges of the pectoral muscle

and parenchymal tissue, breast boundary, and noise) using

the orientation field, the gradient field, and the nonmaximal

suppression technique [4]. The selected core CLS pixels and
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the orientation field were filtered and downsampled to reduce

noise and computational requirements.

B. Phase Portrait Analysis

The phase portrait diagram of a system of two linear, first-

order, differential equations depicts the possible trajectories

of the state variables for different initialization values [11].

Let p(t) and q(t), t ∈ R, denote two differentiable functions

of time t, related as ṗ(t) = F [p(t), q(t)] and q̇(t) =
G[p(t), q(t)], where ṗ(t) and q̇(t) indicate the first-order

derivatives with respect to time, and F and G represent

functions of p and q [10]. Given initial conditions p(0) and

q(0), the solution (p(t), q(t)), can be viewed as a parametric

trajectory or streamline of a hypothetical particle in the (p, q)
plane placed at (p(0), q(0)), at time t = 0, and moving

through the (p, q) plane with the velocity (ṗ(t), q̇(t)). The

(p, q) plane is referred to as the phase plane of the system;

the phase portrait is a graph of the possible streamlines

in the phase plane. A fixed point is a point in the phase

plane where ṗ(t) = 0 and q̇(t) = 0; a particle left at a

fixed point remains stationary. When the system is affine,

[ṗ(t), q̇(t)]T = A[p(t), q(t)]T +b, where A is a 2×2 matrix

and b is a 2 × 1 column matrix. The center (p0, q0) of the

phase portrait is given by the fixed point as [ṗ(t), q̇(t)]T =
0 ⇒ [p0, q0]

T = −A
−1

b. Associating the functions p(t) and

q(t) with the x and y co-ordinates of the Cartesian (image)

plane, we can define the orientation field as φ(x, y|A,b) =
arctan(q̇(t)/ṗ(t)), which is the angle of the velocity vector

(ṗ(t), q̇(t)) with the x axis at (x, y)=(p(t), q(t)).
In the model described above, there are three types of

phase portraits: node, saddle, and spiral; they can be deter-

mined from the nature of the eigen values of A. Because

spiral patterns are not of interest in the present work,

the matrix A was constrained to be symmetric, resulting

in two phase portrait maps: node and saddle. Because a

mammogram could exhibit several patterns, a sliding analysis

window of size 10 × 10 pixels was used with one pixel per

step. For each position of the window a vote was cast at the

node position given by the corresponding fixed point. The

peaks in the node map are expected to indicate the sites of

architectural distortion.

C. Experimental Setup and Database

In this study, 52 mammographic images of 13 normal

individuals and 106 mammographic images of 56 individuals

diagnosed with breast cancer were selected from a database

of 1,745 digitized mammograms of 170 subjects obtained

from Screen Test: Alberta Program for the Early Detection

of Breast Cancer. The film mammograms were digitized at

the spatial resolution of 50 µm and gray-scale resolution of

12 bits/pixel. Mammograms acquired in the last scheduled

visit to the screening program prior to the detection of cancer

were included in the dataset for the present study, and labeled

as “prior mammograms”. The term “interval cancer” is used

to indicate a case where breast cancer was detected outside

the screening program in the interval between scheduled

screening sessions. The mammograms on which cancer was

detected were not available for the present study. All prior

mammograms had been declared to be free of signs of

breast cancer at the time of their original acquisition and

interpretation in the screening program. The normal control

cases selected represent the penultimate screening visits at

the time of preparation of the database, and hence are

considered to be prior mammograms for the normal cases

also. The images were filtered and downsampled to 200

µm/pixel and 8 bits/pixel before applying the Gabor filters.

The orientation field was filtered and downsampled to an

effective resolution of 800 µm/pixel to facilitate efficient

phase portrait modeling.

The 106 prior mammograms of interval-cancer cases were

reviewed by a radiologist specialized in screening mammo-

graphy (J.E.L.D.). Regions related to or suspected to contain

architectural distortion were marked using rectangular boxes

based on the reports available on subsequent imaging, or

biopsy, or by detailed inspection of the prior mammograms.

The images were divided into two categories: visible ar-

chitectural distortion (38 images) and questionable or no

visible architectural distortion (68 images). From the 158

mammograms in the study, a total of 4212 ROIs (2821

ROIs from interval-cancer cases with 262 ROIs related to

the sites of architectural distortion, and 1391 ROIs from

the normal cases) of size 128×128 pixels (except at the

edges of the images) were automatically obtained. ROIs were

labeled at the locations indicated by the peaks in the node

maps, in decreasing order of the value of the peak, up to a

maximum of 30 ROIs per mammogram. The ROIs with their

centers within the areas of architectural distortion identified

by the radiologist were labeled as true-positive ROIs; the

others were labeled as false-positive ROIs. Phase portrait

analysis did not detect any true-positive ROI in 14 prior

mammograms of the interval-cancer cases; the radiologist

had indicated that the corresponding images had no visible

architectural distortion.

The results of application of the methods are illustrated

in Figure 1 for a prior mammogram of an interval-cancer

case. In part (a), the rectangle shows the area of architectural

distortion identified by the radiologist. The magnitude image

resulting from the Gabor filters, the orientation field, and the

node map are shown in parts (b), (c), and (d), respectively.

A peak is evident at the site of architectural distortion.

Figure 1 (e) shows the ROIs obtained.

D. Feature Extraction

Haralick’s statistical measures of texture [12], based on

the gray-level co-occurrence matrix (GCM), were used in

the present work. Four normalized GCMs were computed

with unit pixel distance for the angles of 0, 45, 90, and 135
degrees. The four GCMs were averaged to obtain a single

GCM for computation of Haralick’s 14 texture features.

The two-dimensional (2D) Fourier spectrum of each ROI

was transformed into a one-dimensional (1D) function S(f),
by averaging as a function of the radial distance f from

the zero-frequency point over all angles. The spectrum S(f)
is related to the radial frequency f according to the model
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Fig. 1. (a) The “prior mammogram” of an interval cancer case. The rectangle is of size 59.9 mm × 31.7 mm, and indicates the region of architectural
distortion. Image size 1370 × 850 pixels at 200 µm per pixel. (b) Magnitude response obtained using a bank of 180 real Gabor filters. (c) Orientation
field angle superimposed on the mammographic image; needles are drawn for every fifth pixel. (d) The node map. Each asterisk mark (*) corresponds
to a peak position detected automatically in the node map. The numbers next to the asterisk marks indicate the peaks in descending order of magnitude.
(e) The 30 ROIs obtained automatically using the peaks detected in the node map. The size of each ROI is 128 × 128 pixels (except at the edges).

S(f) ∝ (1/f)β . Linear regression was applied to a limited

frequency range of the 1D spectrum plotted on a log-

log scale, excluding points in the low-frequency and high-

frequency regions, to estimate the slope β of the fitted line.

β is related to FD as [13] FD = (8 − β)/2.

E. Feature Selection

Feature selection was performed separately based on step-

wise logistic regression, sequential forward selection, and

the area under the receiver operating characteristics (ROC)

curve (AUC) for each feature. The t-test was also applied

to obtain the p-value to evaluate the statistical significance

of the difference between the values of a given feature for

the true-positive and false-positive ROIs. Logistic regression

resulted in selection of the six features sum average, entropy,

node value, contrast, FD, and correlation. Sequential forward

selection led to the five features sum average, node value,

difference variance, energy, and FD. The top five features in

terms of AUC (with p-value < 0.001) were sum average,

node value, difference variance, contrast, and FD. The fea-

tures selected by stepwise regression and the top five features

selected based on AUC were used for classification.

F. Pattern Classification

The ROC and the free-response receiver operating charac-

teristics (FROC) procedures were used to test and evaluate

the classification accuracy using several classifiers. For ROC

analysis, Fisher linear discriminant analysis (FLDA); the

Bayesian method; and the artificial neural network (ANN)

based on the single-layer perceptron (SLP) with a tan-

gent sigmoid activation function, the multi-layer perceptron

(MLP) with two hidden layers (the first hidden layer with

three neurons and the second with one neuron) and tan-

gent sigmoid activation function, and radial basis functions

(RBF) [14] were used. In training and testing the FLDA and

Bayesian classifiers, the leave-one-out (LOO) method was

used. For classification using ANNs with SLP, MLP, and

RBF, 50% of each of the true-positive and the false-positive

ROIs were randomly selected to generate the training and the

testing sets, and the procedure was repeated 50 times. FROC

analysis was used to assess the false-positive rate for a given

level of sensitivity when classification of the ROIs was placed

in the context of detection of architectural distortion in full

mammograms. The generalized regression neural network

(GRNN) and the ANN based on SLP, MLP, and RBF were

used for classification using the LOO method: the features

of all ROIs belonging to the image being analyzed were

removed from the dataset when training the classifier.

III. RESULTS AND DISCUSSION

The ROC performance achieved, in terms of the AUC, is

presented in Table I using the features selected by stepwise

logistic regression and the top five features obtained by

ROC analysis. With ANN-based classification, the results

were expected to be better compared to the FLDA and

Bayesian methods. However, because of resampling for

cross-validation, the results are biased, and highly dependent

on the sample size, the randomly selected samples, and their

statistical distribution [15]. Furthermore, the AUC obtained

based on crossvalidation and with ANN-based classifiers are

pessimistically biased because the ratio of the total number

of available samples per class to the number of available

features is greater than five [15]. The results could be

improved by using the LOO method with these classifiers.

The results of FROC analysis are presented in Table II

for several classifiers with the leave-one-image-out method.

The FROC curves using four classifiers with the six features

obtained by stepwise logistic regression are shown in Fig-

ure 2. With the sensitivity of 0.8 as the reference point, the

selected features showed the best performance of 10.5 false

positives per image using ANN-RBF.

Ayres and Rangayyan [4] achieved a sensitivity of 95% at
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TABLE I

RESULTS OBTAINED IN TERMS OF AUC USING THE SELECTED

FEATURES BASED ON STEPWISE LOGISTIC REGRESSION AND ROC

ANALYSIS. STD.= STANDARD DEVIATION.

Classifier
Six features from stepwise

logistic regression
Top five features based

on ROC analysis

FLDA 0.71 0.69
Bayesian 0.75 0.74
SLP mean 0.72, std. 0.03 mean 0.71, std. 0.06
MLP mean 0.74, std. 0.08 mean 0.73, std. 0.10
RBF mean 0.75, std. 0.03 mean 0.76, std. 0.03

9.9 false positives per image. Rangayyan et al. [7] obtained

a sensitivity of 79% at 8.4 false positives per image. In the

work reported by Sameti et al. [8] the average classification

rate was 72%. Compared to those, the results obtained in the

current work are significant and encouraging.

TABLE II

RESULTS OBTAINED USING SEVERAL CLASSIFIERS AND THE

LEAVE-ONE-IMAGE-OUT METHOD IN FROC ANALYSIS. THE RESULTS

ARE IN TERMS OF FALSE POSITIVES PER IMAGE AT 80% SENSITIVITY.

Classifier
Six features from stepwise

logistic regression
Top five features based

on ROC analysis

GRNN 11.3 11.5
SLP 13.3 11.9
MLP 12.1 13.6
RBF 10.5 10.8

IV. CONCLUSION

The results obtained with the prior mammograms of

interval-cancer cases, including a set of normal control cases,

and without incorporating the mammograms on which cancer

was detected, are comparable to the results obtained by

Rangayyan et al. [7], [16] using smaller sets of images,

different feature selection technique, and other classifiers.

Even with a larger dataset and a number of normal control

cases included, there is not much increase in the number of

false positives per image. In addition, there were as many

as 68 images with no visible or questionable architectural

distortion. The results indicate that the proposed methods can

be used to achieve earlier detection of subtle signs of breast

cancer in mammograms, in particular architectural distortion,

with good accuracy.

The derivation of additional features for the detection

of sites of architectural distortion at higher sensitivity and

lower false-positive rates, and the use of the SVM as the

classifier are in progress. Increased sensitivity in breast

cancer diagnosis and the development of CAD techniques for

localization of architectural distortion could lead to efficient

detection of early signs of breast cancer.

REFERENCES

[1] K. Doi, “Computer-aided diagnosis in medical imaging: historical
review, current status and future potential,” Computerized Med.

Imaging and Graphics, vol. 31, pp. 198–211, 2007.
[2] A. M. Knutzen and J. J. Gisvold, “Likelihood of malignant disease for

various categories of mammographically detected, nonpalpable breast
lesions,” Mayo Clinic Proc., vol. 68, pp. 454–460, 1993.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

False positives per image

S
e

n
s
it
iv

it
y

 

 

SLP
MLP
GRNN
RBF

Fig. 2. FROC curves using four classification techniques with the leave-
one-image-out method and the six features obtained by logistic regression.

[3] J. A. Baker, E. L. Rosen, J. Y. Lo, E. I. Gimenez, R. Walsh, and M. S.
Soo, “Computer-aided detection (CAD) in screening mammography:
Sensitivity of commercial CAD systems for detecting architectural
distortion,” American J. Roentgenology, vol. 181, pp. 1083–1088,
2003.

[4] F. J. Ayres and R. M. Rangayyan, “Reduction of false positives in
the detection of architectural distortion in mammograms by using a
geometrically constrained phase portrait model,” Intl. J. Computer

Assisted Radiology and Surgery, vol. 1, pp. 361–369, 2007.
[5] T. Matsubara, T. Ichikawa, T. Hara, H. Fujita, S. Kasai, T. Endo, and

T. Iwase, “Automated detection methods for architectural distortions
around skinline and within mammary gland on mammograms,” in
Proc. the 17th Intl. Congress and Exhibition on Computer Assisted

Radiology and Surgery, H. U. Lemke, M. W. Vannier, K. Inamura,
A. G. Farman, K. Doi, and J. H. C. Reiber, Eds., London, UK, 2003,
pp. 950–955, Elsevier.

[6] Q. Guo, J. Shao, and V. F. Ruiz, “Characterization and classification
of tumor lesions using computerized fractal-based texture analysis and
support vector machines in digital mammograms,” Intl. J. Computer

Assisted Radiology and Surgery, vol. 4(1), pp. 11–25, 2009.
[7] R. M. Rangayyan, S. Prajna, F. J. Ayres, and J. E. L. Desautels,

“Detection of architectural distortion in mammograms acquired prior
to the detection of breast cancer using Gabor filters, phase portraits,
fractal dimension, and texture analysis,” Intl. J. Computer Assisted

Radiology and Surgery, vol. 2(6), pp. 347–361, 2008.
[8] M. Sameti, R. K. Ward, J. M.-Parkes, and B. Palcic, “Image feature

extraction in the last screening mammograms prior to detection of
breast cancer,” IEEE J. Selected Topics in Signal Processing, vol.
3(1), pp. 46–52, 2009.

[9] D. Gabor, “Theory of communication,” J. Institute of Electrical

Engineers, vol. 93, pp. 429–457, 1946.
[10] R. M. Rangayyan and F. J. Ayres, “Gabor filters and phase portraits

for the detection of architectural distortion in mammograms,” Med.

and Biol. Engineering and Computing, vol. 44, pp. 883–894, 2006.
[11] A. R. Rao, A Taxonomy for Texture Description and Identification,

Springer-Verlag, New York, NY, 1990.
[12] R. M. Haralick, “Statistical and structural approaches to texture,” Proc.

IEEE, vol. 67, pp. 786–804, 1979.
[13] M. Aguilar, E. Anguiano, and M. A. Pancorbo, “Fractal characteri-

zation by frequency analysis: II. A new method,” J. Microscopy, vol.
172, pp. 233–238, 1993.

[14] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley-
Interscience, New York, NY, 2nd edition, 2001.

[15] B. Sahiner, H.-P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski,
“Feature selection and classifier performance in computer-aided diag-
nosis: the effect of finite sample size,” Medical Physics, vol. 27(7),
pp. 1509–1522, 2000.

[16] R. M. Rangayyan, S. Banik, S. Prajna, and J. E. L. Desautels, “Detec-
tion of architectural distortion in prior mammograms of interval-cancer
cases,” in Proc. 23rd Intl. Congress and Exhibition: Computer Assisted

Radiology and Surgery, Berlin, Germany, 2009, In press.

6670


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

