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Abstract—In clinical practice, renal cancer diagnosis is 

performed by manual quantifications of tumor size and 

enhancement, which are time consuming and show high 

variability. We propose a computer-assisted clinical tool to assess 

and classify renal tumors in contrast-enhanced CT for the 

management and classification of kidney tumors. The 

quantification of lesions used level-sets and a statistical 

refinement step to adapt to the shape of the lesions. Intra-patient 

and inter-phase registration facilitated the study of lesion 

enhancement. From the segmented lesions, the histograms of 

curvature-related features were used to classify the lesion types 

via random sampling. The clinical tool allows the accurate 

quantification and classification of cysts and cancer from clinical 

data. Cancer types are further classified into four categories. 

Computer-assisted image analysis shows great potential for 

tumor diagnosis and monitoring. 

 

I. INTRODUCTION 

T is estimated that a quarter of a million people in the 

USA are living with kidney cancer and their number 

increases by 51000 yearly [11]. Contrast-enhanced CT has 

proven exceptionally useful to improve diagnosis due to the 

ability to differentiate tumors from healthy kidney tissue 

[2,23]. Fig. 1 shows an example of how normal kidney 

parenchyma and lesions change intensity in contrast-

enhanced CT. The level of enhancement in a tumor is an 

crucial indicator of malignancy; equally important is the 

growth/regression rate of tumors for a well targeted therapy.  

As manual measurements are time consuming and show 

high intra- and inter-operator variability, computer-assisted 

radiology shows great promise in assisting the monitoring of 

renal tumors. Moreover, the two-dimensional (2D) bias 

toward the image acquisition plane manifested during the 

manual measurement of cancer can be removed by the 3D 

quantification allowed by computer analysis.  
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Most work in renal image analysis is related to kidney 

segmentation [3,9,15,18]. The quantification and 

classification of kidney tumors was seldom addressed. 

Notably, a marker-controlled watershed algorithm segmented 

both renal and lesion volumes in 2D data using three manual 

contours and granulometry [19]. A homogeneous region 

growing from a seed point was presented in [10].  

Recently, feature extraction from statistical information 

of basic image descriptors showed promising results in 

image processing and computer vision applications. Image 

features may include edge and gradient descriptors. 

Representative methods include Scale-Invariant Feature 

Transform (SIFT) [13], Shape Context [1] and Histograms of 

Oriented Gradient (HOG) [6]. Inspired by HOG, in this 

paper we propose using a set of shape descriptors called 

Histograms of Curvature Features (HCF) to describe renal 

lesions for cancer classification. HCF was previously used 

for colon polyp matching [21]; we employ it to classify renal 

tumors. HCFs are statistical descriptors that can capture the 

intrinsic properties of lesions. We utilize multi-phase CT 

values and curvature-related descriptors as basic image 

descriptors, i.e. shape index, curvedness, Gaussian and mean 

curvatures. The advantage of these curvature related 

descriptors is that they are rotation, translation and scale 

invariant. After feature extraction, non-linear dimensionality 

reduction is applied to HCF features to characterize lesions. 

Our study proposes the semi-automated quantification 

and classification of renal tumors for the assertive 

management of tumor diagnoses and monitoring. First, it 

quantified the three-dimensional size, volume and 

enhancement of renal tumors. Then, combined histograms of 

curvature-related features and lesion intensity were used to 

classify the lesion types via random sampling. This is, to our 

knowledge, the first semi-automated method that quantifies 

and classifies renal tumors using serial enhancement. 
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 Right Kidney  Tumors 

 
Fig. 1. Multi-phase abdominal 4D CT data. 2D slices of 3D volumes: 

(a) before contrast and (b) at portal venous enhancement phase. 

6679

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

II. MATERIALS AND METHODS 

A. Data and Materials 

Contrast-enhanced CT data consisted of two serial 

acquisitions. The first image was obtained before contrast 

administration. Then the patients were injected with 130ml 

of Isovue-300 and a contrast-enhanced acquisition was 

completed during the portal venous phase. Data were 

collected using LightSpeed Ultra and QX/i (GE Healthcare) 

and MX 8000 scanners (Philips Healthcare). Image 

resolution ranged from 0.64x0.64 mm
2
 to 0.97x0.97mm

2
 in 

the axial plane with 1 mm slice thickness.  

Data from 40 patients with renal tumors were analyzed 

with a total of 116 lesions. Lesion diameter varied from 5.3 

to 43.3 mm. There were 41 cysts and 75 cancers: 22 Von 

Hippel-Lindau (VHL) syndromes, 13 Birt-Hogg-Dubé 

(BHD) syndromes, 19 hereditary papillary renal cell (HPRC) 

carcinomas, and 21 hereditary leiomyomatosis and renal cell 

cancers (HLRCC). Twelve lesions of mixed types were 

segmented manually by two observers. 

The method for lesion analysis can be subdivided into two 

major steps: quantification and classification via HCF. 

B. Segmentation/Quantification 

The segmentation and quantification of tumors follows the 

algorithm in [12]. Lesions were segmented in the venous 

phase, when they appear better differentiated from the 

enhanced renal tissue. Data from the two-phase scans are 

first automatically aligned by the image position relative to 

the body. The pre-processing of images includes an intra-

patient inter-phase registration and data smoothing. The 

Perona-Malik anisotropic diffusion [16] was employed for 

smoothing and the demons non-linear algorithm for 

registration [20]. The images before contrast enhancement 

were registered to the venous phase data. Although the 

contrast-enhanced CT data are intra-modal, the organ 

enhancement requires the use of a multimodal similarity 

measure, e.g. mutual information [14].  

The segmentation of renal lesions used a combination of 

fast marching and geodesic active contour level sets [5,17]. 

A fast marching level set initializes the segmentation 

expanding from a seed point provided by the user. The 

sigmoid of the gradients computed from the portal venous 

phase CT scan supplied the edge image. Then, a level set 

based on geodesic active contours refines the fast marching 

segmentation [5]. The level set parameters were 

automatically adapted to image characteristics for 

segmentation robustness [12].  

The quantification allows computing linear and 

volumetric measurements of a lesion from its segmentation. 

Moreover, the lesions’ volumes and CT values can be 

extracted for subsequent classification. 

C. Histograms of Curvature-related Features 

Renal lesions appear to be spherical with smooth surfaces. 

However, their shape may be influenced by the location 

in/on the kidney, the solidity of the tumor, and the properties 

of the surrounding tissue. Most importantly, the CT values 

characterizing the lesion at different stages of the contrast 

enhancement are key features for the characterization of 

tumors. Hence, we propose computing histograms that 

combine morphological and multi-phase (4D) intensity 

(including enhancement) features for each lesion to classify 

cysts and types of cancer.  

  Intuitively, curvature measures the extent that a 

geometric object deviates from flat. For a two-dimensional 

iso-surface embedded in
3R , the intersection of the surface 

with a plane containing the normal vector and one of the 

tangent vectors at a point on the surface is a plane curve and 

has a curvature called normal curvature. The maximum and 

minimum values of the normal curvature at a point are called 

the principal curvatures, k1 and k2. The directions of the 

corresponding tangent vectors are called principal directions. 

The Gaussian curvature is defined as the product of the 

principal curvatures: kGaussian=k1k2. A surface is locally 

convex when the Gaussian curvature is positive; it is locally 

saddle when the Gaussian curvature is negative. The mean 

curvature is one-half of the sum of the principal curvatures: 

kmean=(k1+k2)/2. Besides Gaussian and mean curvatures [8], 

shape index (SI) and curvedness (CV) can also describe the 

shape of a lesion [22]. At a given voxel p, SI and CV 

features can be defined as 
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where    1 2k p k p
 are two principal curvatures.  

To make full use of curvature information and capture 

internal texture information of renal lesions, we utilize 

histograms of curvature features to characterize the tumors. 

In Table I, we list seven curvature-related features (including 

the gradient magnitude) used in our HCF method. 

Additionally, a feature based on the CT values (here CT 

value = Hounsfield units + 1024) was used to help to 

characterize lesions. For each feature, we choose a range and 

divide it into 98 equally-spaced bins. Voxels whose feature 

values are smaller than the lower limit or larger than the 

TABLE I 

FEATURES USED BY THE HCF DESCRIPTOR 

 Lower limit Upper limit 

Shape index 0 +1 

Curvedness 0 +1 

Gaussian curvature -1 +1 

Mean curvature -1 +1 

Max curvature -1 +1 

Min curvature -1 +1 

Gradient magnitude 0 300 

CT value 0 1500 

Lower and upper limits are listed for each feature used in the 

histograms. These limits are selected according to the distributions 

of features. The number of bins used for each feature was 100. 
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upper limit are counted in two additional bins. We 

concatenate the eight histograms and get a feature vector 

with 800 dimensions for each lesion for each phase. The size 

of the curvature computation kernel had =5. 

Due to the large number of features and limited sample 

data, it is prohibitive to learn a good decision boundary. 

Dimensionality reduction of data can assist training a good 

classifier in the low dimensional space. Principal component 

analysis (PCA) is a classic technique for dimensionality 

reduction [7]. It is an orthogonal linear transformation in 

essence and projects the data to a new coordinate system 

with low dimensions which can retain the variance of 

original data to the maximum extent. Given a dataset which 

contains n samples X = {x1, x2,…, xn}, PCA finds the first q 

principal axes wj, j = {1,…,q} which are orthonormal and 

can retain variance of samples to maximal extent. The 

principal vectors are given by the q dominant eigenvectors of 

the sample covariance matrix    
n

T

nn xxxx
N

S 1 , 

where x is the data sample mean. The q principal 

components of the observed samples xn are given through 

linear mapping tn = W
T
(xn- x ) , where W = {w1, w2,…, wq}   

After PCA dimension reduction, the kidney data were 

mapped into a 10 dimensional linear subspace according to 

the distribution of eigenvalues. Random sampling was used 

to train and test the algorithm and a support vector machine 

[4] to perform the classification. 

Comparative tests using only the mean CT value of a 

lesion at different enhancement phases were performed, as in 

clinical practice [23]. In our approach we used CT values 

before contrast enhancement and at portal venous phases.  

III. RESULTS 

On registered data, the computer segmentations of lesions 

from the portal venous phase were used to estimate the mean 

intensity of lesions in the non-contrast phase. Fig. 2 shows an 

example of multi-phase segmentation of lesions. Although 

there is insufficient intensity information for the direct 

segmentation of tumors from the non-contrast phase, our 

method allows their accurate quantification. 

The inter-observer manual measurements of lesions 

showed a volume overlap of 0.80.06, while the overlaps 

between the computer segmentation and each of the 

observers were 0.80.06 and 0.80.05 respectively.  

Fig. 3 shows the distribution of SI as an example of feature 

selection for lesion classification. Although a priori lesions 

are approximately spherical, this is not a generally valid 

assumption, as seen in the rendering in Fig. 2. Note in Fig. 3 

the similarities between SI distributions of two cysts versus 

the morphological discrepancies between a benign and a 

malignant lesion. Using HCF, these structural differences are 

quantifiable to classify between cysts and cancers.  

Based on clinical observations of renal tumors in CT [23], 

we analyzed the patterns of tumor enhancement to 

differentiate between different types of lesions. The 

enhancement analysis was compared to the HCF 

classification, which encompassed both 4D intensity and 

morphological information. Fig. 4 shows the receiver 

operating characteristic (ROC) curves for classifying renal 

lesions. Each point on the ROC is the average result of 50 

random tests. First, we separate benign and malignant 

lesions. Then VHL/BHD cancers (typically solid tumors) are 

separated from HPRC/HLRCC. Finally, all categories of 

cancers are classified into VHL, BHD, HPRC and HLRCC. 

Areas under the curve (AUC) were computed for the results 

shown in Fig. 4 and ROC curves using HCF were compared 

with those obtained from employing only the mean CT 

values of lesions. Statistical results are presented in Table II. 

The sensitivity and specificity of tumor classification are 

reported using HCF. 

 

 
Fig. 2. Segmentation of renal lesions. The top row shows a VHL 

tumor segmented in the portal venous phase and its 3D rendering. 

The bottom row presents the segmentation from the non-contrast 

data. Note the irregular shape of this cancer. 

 

 
Fig. 4. Classification ROC curves using HCF vs. mean multi-phase 

CT values. 

 
Fig. 3. Distribution of shape indexes between two benign lesions 

(left) and a benign and malignant lesion (right). 
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IV. DISCUSSION 

A method for the semi-automated quantification and 

classification of renal tumors was presented, to assist in the 

clinical management of tumor diagnoses and monitoring. We 

quantified the 3D size and volume of renal tumors with 

errors comparable to the manual inter-observer variability. 

Additionally, our method analyzes the enhancement and 

morphology of segmented lesions via histograms of 

curvature-related features (HCF). The HCF method utilizes 

the distributions of various morphological features inside the 

lesions combined with multi-phase intensity (CT values) 

information. In order to capture the intrinsic dimensions of 

the high-dimensional HCF feature, dimensionality reduction 

was employed after feature extraction. Experimental results 

on a CTC dataset of 116 renal lesions showed that the HCF 

method is superior to the typical clinical method based on 

mean CT values. Moreover, our approach found quantifiable 

discrepancies between morphologies of benign and 

malignant lesions.  

Five types of renal lesions were analyzed: benign cysts, 

von Hippel-Lindau (VHL) syndromes, Birt-Hogg-Dubé 

(BHD) syndromes, hereditary papillary renal cell (HPRC) 

carcinomas, and hereditary leiomyomatosis and renal cell 

cancers (HLRCC). The automated classification of tumors 

showed significant separation between benign and malignant 

tumors and allows the further classification into types of 

cancer. The differentiation between VHL and BHD 

syndromes had the poorest results, as both types of cancer 

have similar appearance properties. 

The automated analysis for renal tumor classification and 

shows great promise toward computer-assisted kidney 

diagnosis. The method has the potential to allow the serial 

analysis of tumors for disease monitoring, drug trials and 

noninvasive clinical surveillance. 
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TABLE II 

ROC ANALYS FOR THE CLASSIFICATION OF RENAL LESIONS 

 
AUC-

HCF 

AUC-

CT 

SE 

(%) 

SP 

(%) 

Benign vs. malignant 

(p= 0.45) 

0.99 0.99 97.8 93.7 

VHL/BHD vs. 

HPRC/HLRCC (p<0.001) 

0.99 0.96 97.7 93.8 

VHL vs. BHD  

(p<0.001) 

0.61 0.5 51.2 61.4 

HPRC vs. HLRCC  

(p<0.001) 

0.9 0.77 80 83.7 

Areas under the curve (AUC), sensitivity (SE) and specificity (SP) 

values are presented for the ROC curves used to classify renal 

tumors. SE and SP reflect the best results obtained using HCF. p 

values were computed between comparative ROC curves using HCF 

or mean CT values. 
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