
  

  

Abstract— Traditional endoscopic methods do not allow the 
visualization of the entire Gastrointestinal (GI) tract. Wireless 
Capsule Endoscopy (CE) is a diagnostic procedure that 
overcomes this limitation of the traditional endoscopic 
methods. The CE video frames possess rich information about 
the condition of the stomach and intestine mucosa, encoded as 
color and texture patterns. It is known for a long time that 
human perception of texture is based in a multi-scale analysis 
of patterns, which can be modeled by multi-resolution 
approaches. Furthermore, modeling the covariance of textural 
descriptors has been successfully used in classification of 
colonoscopy videos. Therefore, in the present paper it is 
proposed a frame classification scheme based on statistical 
textural descriptors taken from the Discrete Curvelet 
Transform (DCT) domain, a recent multi-resolution 
mathematical tool. The DCT is based on an anisotropic notion 
of scale and high directional sensitivity in multiple directions, 
being therefore suited to characterization of complex patterns 
as texture. The covariance of texture descriptors taken at a 
given detail level, in different angles, is used as classification 
feature, in a scheme designated as Color Curvelet Covariance. 
The classification step is performed by a multilayer perceptron 
neural network.  The proposed method has been applied in real 
data taken from several capsule endoscopic exams and reaches 
97.2% of sensitivity and 97.4% specificity. These promising 
results support the feasibility of the proposed method. 

I. INTRODUCTION 
ONVENTIONAL endoscopic exams do not allow the 
entire visualization of the gastrointestinal (GI) tract. The 

conventional upper GI endoscopy only reaches the 
duodenum, while lower GI endoscopy is limited to the 
terminal ileum, which means that the vast majority of the 
small bowel, which has an average length of six meters, is 
not visible with these conventional techniques. Other 
important disadvantages of conventional endoscopy methods 
are the discomfort caused to the patients and the risk of 
injuring the GI walls with the tip of the endoscope, since the 
correct navigation of the endoscope requires a highly trained 
physician.  

Capsule Endoscopy (CE) was introduced in 2000, being 
considered the most important technological innovation in 
GI diagnostic medicine since the flexible endoscope [1].  
The capsule endoscopic exam is a simple and non-invasive 
procedure that is well accepted by the patient and can be 
performed on an outpatient basis. The endoscopic capsule is 
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a pill-like device, with only 11mm×26 mm, and includes a 
miniaturized camera, a light source and circuits for the 
acquisition and wireless transmission of signals [2]. As the 
capsule travels through the GI tract, it acquires video frames 
at a rate of two per second and sends them to a hard disk 
receiver that is worn in the belt of the patient, in a wireless 
communication scheme. At the end of the battery life, which 
is approximately eight hours, more than 50000 images will 
have been acquired. If no complications arise, the capsule 
should be in the patient’s stool, usually within 24–48 h, and 
not reused [3]. The analysis of this huge amount of data is 
done in a workstation, with proprietary software that allows 
the visualization of the video, by an expert physician and 
takes, in average, 40-60 min [3]. This task requires a highly 
focused viewer, since any distraction of the physician may 
lead to misevaluation of exams. Nevertheless, the human 
evaluation is prone to errors. Furthermore, having an expert 
physician analyzing the exam for a long time is a significant 
parcel in the total cost of the exam, so there is an important 
economic opportunity to develop a computer assisted 
diagnosis tool to this task. 

After the introduction of CE, it was discovered that the 
prevalence and malignancy rates for small bowel tumors are 
much higher than previously reported and that the early use 
of CE can lead to earlier diagnoses, reduced costs and, 
hopefully, prevent cancer [1].  

The use of statistic textural descriptors has been 
successfully applied in classification schemes for 
identification of abnormalities in colonoscopy videos in the 
work of Karkanis et al. [4]. Kodogiannis et al. proposed two 
different schemes to extract features from texture spectra in 
the chromatic and achromatic domains, namely a structural 
approach based on the theory of formal languages and a 
statistical approach based on statistical texture descriptors 
extracted from the different color channels’ histograms [5]. 
From authors’ previous work [6,7], the application of texture 
analysis techniques to classify capsule endoscopic frames is 
feasible and presents promising results. 

The classification scheme described in this paper uses 
statistical texture descriptors taken from the Discrete 
Curvelet Transform, a powerful multi-resolution 
mathematical tool, and a standard Multi Layer Perceptron 
(MLP) network trained through the well known back-
propagation learning process. The choice of a simple 
classification scheme was done to make the results more 
representative of the choice of the features. The proposed 
algorithm has been used to classify real data from Hospital 
dos Capuchos’ patients. 
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II. DISCRETE CURVELET TRANSFORM 
It is known for a long time that human perception of 

texture is based on a multi-scale analysis of patterns [8], 
which can be modeled by multi-resolution approaches. In 
fact, the multi-resolution ability of the Discrete Wavelet 
Transform (DWT) has been vastly explored in several fields 
of image processing such as compression, denoising and 
classification [9]. However, the directional sensitivity of the 
DWT is limited, which might not be enough to capture all 
the complex texture patterns within an image. 

Introduced in 2000, the Continuous Curvelet Transform 
(CCT) is based on an anisotropic notion of scale and high 
directional sensitivity in multiple directions [10]. While 
wavelets are certainly suitable for dealing with objects 
where the interesting phenomena, e.g., singularities, are 
associated with exceptional points, they are ill-suited for 
detecting, organizing, or providing a compact representation 
of intermediate dimensional structures. Given the 
significance of such intermediate dimensional phenomena, 
there has been a vigorous effort to provide better adapted 
alternatives by combining ideas from geometry with ideas 
from traditional multi-scale analysis [11]. Therefore, this 
tool can be used as a multi-resolution and multi-directional 
representation of the information within an image. 
 

 

Fig. 1. CCT tiling of the frequency domain (a) and basic tiling of the 
digital coronization process (b) 

 

The CCT is based on the tilling of the 2D Fourier space in 
different concentric coronae, one of each divided in a given 
number of angles, accordingly with a fixed relation. Now, to 
each of this polar “wedges” will be associated a frequency 
window Uj (Fig. 1-a) that will correspond to the Fourier 
transform of a curvelet φj(x) function, which can be thought 
of as a “mother” curvelet, since all the curvelets at scale 2-j 
may be obtained by rotations and translations of φj(x). So the 
CCT can be defined by a pair of windows W(r), a radial 
window, and V(t), an angular window. These are both 
smooth, nonnegative, and real-valued, with W taking 
positive real arguments and supported on r � (1/2, 2) and V 
taking real arguments and supported on t � [−1, 1]. These 
windows will always obey the admissibility conditions: 
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Now, for each j ≥ j0, it is introduced the frequency 
window Uj defined in the Fourier domain by: 
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where |j/2| is the integer part of j/2 and Uj corresponds to a 
polar “wedge” as seen in Fig. 1-a. The frequency window Uj 
will correspond to the Fourier transform of a curvelet φj(x) 
function. Consider an equispaced sequence of rotation 
angles θl=2π.2|-2/j|.l, with l=0,1,.. such that 0 ≤ θl ≤ 2π, whose 
spacing is scale dependent,  and the sequence of translation 
parameters k = (k1, k2) � Z2. With these notations, curvelets 
are defined (as function of  x=(x1, x2)) at scale 2-j, orientation 
θl and position xk

(j,l)=R-1
θl (k1.2-j, k2.2-j) by:  
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where Rθ is the rotation by θ radians and Rθ
 -1 its inverse (and 

also its transposed). A curvelet coefficient c(j,l,k) is then 
simply the inner product between an element f � L2 (R2) and 
a curvelet φj,l,k : 
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Reference [11] proposes two different schemes for the 
discretization of the CCT, namely the USFFT algorithm and 
the wrapping algorithm. Both rely in the transformation of 
the frequency coronae of the CCT of Fig. 1 in a “Cartesian 
coronae”, which are based on concentric squares (instead of 
circles) and shears, in a process designated by digital 
coronization. The motivation for this digital coronization is 
the fact that coronae and rotations are not especially adapted 
to Cartesian arrays, which difficult their computation.  Since 
it is stated that the wrapping algorithm may be simpler to 
understand and implement, this approach was chosen to 
calculate the Discrete Curvelet Transform (DCT) in the 
present work. Further details about the CCT and its 
discretization can be found in [9]. 

Therefore, the DCT coefficients are accurate 
representations of the original image with different detail, 
given by the different frequency content in each scale, but 
also with different detail in multiple directions, overcoming 
the directional limitations of the Discrete Wavelet 
Transform. This might be well suited for the analysis of 
complex spatio-frequency patterns as texture. 

III. STATISTICAL TEXTURE DESCRIPTORS 
The seminal work of Haralick suggested the use of 

statistical measures taken from coocurrence matrices as 
texture descriptors [12]. Similarly, there are several 
statistical features that can be extracted from the curvelet 
domain as texture descriptors, being the most common the 
mean, the standard deviation, the energy and the entropy of 
each DCT sub-band [13].   
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Note that capsule endoscopic video frames are usually 
square images of 256x256 but the information is restricted to 
a circular area in the middle of the image, as it is observable 
in Fig. 2. Given the anisotropy of scale of the DCT, the 
computation of the textural descriptors will have to be done 
only for the coefficients within the area correspondent to the 
circular region of the CE frames, N. The proposed texture 
descriptors can be calculated as: 
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where P(i,j) corresponds to the pixel at position (i,j) and p(g) 
the probability of a pixel having the gray level g, i.e., the gth 
entry of the image’s normalized histogram. 

Since the low frequency components of the images do not 
contain major texture information [7], the most important 
scales in the DCT will be those in which are present medium 
and high frequency, texture encoding, information. 
Therefore, no texture descriptors were computed for the 
scales whose coefficients correspond to low frequency 
content (coarsest scale coefficients). Furthermore, the 
coarsest scale coefficients of the DCT are not directional, 
and consequently do not possess directional sensitivity. 
From authors’ previous work, it is highly expectable that the 
most relevant information for classification purposes is 
encoded as high frequency content in the scale 
correspondent to the highest detail level. Note however, that 
the computation of the proposed texture descriptors at every 
DCT angle will result in high dimensionality feature vectors. 

The statistical dependence of textural descriptors taken in 
different color channels is useful to distinguish normal from 
abnormal texture patterns, as stated in authors’ previous 
work. Furthermore, the same finding was previously 
reported in [4], for colonoscopy videos. Therefore, in the 
present work it is proposed a similar framework, designated 
as Color Curvelet Covariance, where the covariance of 
textural descriptors in the different color channels will be 
used as a classification feature. Note that in the present 
framework, the high directional sensitivity of the DCT will 
be likely to lead to more robust descriptors than a similar 
scheme used in textural descriptors taken from Discrete 
Wavelet Transform coefficients. The Color Curvelet 
Covariance of a texture descriptor can be calculated as: 

 

where a, b represent the different color channels in the 

covariance calculation, Fm is the statistic textural descriptor, 
α is the considered angle of the DCT coefficients, s the 
considered DCT scale and E{Fm(a,s,α)} the average of the 
statistical textural descriptor Fm over the different angles α, 
in the color channel a. Note that if i=j, the previous equation 
is nothing more than the variance of the textural descriptor 
Fm with the DCT angle α. Conversely, CCC(i,j,s,m), for i≠j,  
will give a measure of the similarity of the variation of the 
textural descriptor Fm taken from the DCT coefficients at 
different angles, between two color channels. 

  Given that the value of the statistical descriptor Fm 
already possesses useful information for the texture 
characterization process, and given that the proposed 
CCC(i,j,s,m) features only account for the covariance of Fm 
between color channels, it is proposed to also include in the 
feature set the average value E{Fm}. Note that E{Fm} is only 
the mathematical expectancy for the value of Fm and 
therefore does not possess as much information as the 
sequence of the different Fm values taken from the DCT 
coefficients at different angles, but the inclusion of the full 
sequence would lead to feature vectors with very high 
dimensionality, which would compromise the training of the 
classifier and the speed of the classification step. 
Furthermore, if the same texture pattern was rotated, the 
sequence of the different Fm would be affected, which could 
decrease the classification performance.  

IV. IMPLEMENTATION AND RESULTS 
The experimental dataset was constructed with frames 

from CE video segments of different patients’ exams, taken 
at the Hospital dos Capuchos in Lisbon by Doctor Jaime 
Ramos. The final dataset consisted in 400 normal frames, 
which were equally divided in two sets, for the MLP 
network training and testing, and 200 abnormal frames, 
which were also equally divided in two sets. Examples of the 
dataset frames can be observed in Fig. 2. 
 

 

Fig. 2. Example of a normal (a) and an intestinal tumor (b) CE frames 
 

A 2.4 GHz Pentium Core Duo processor-based, with 3 
GB of RAM, was used with MATLAB to run the proposed 
algorithm and the average processing time is approximately 
1.5 s. Note however that the implementation of the proposed 
algorithm was not optimized for speed, so the processing can 
still be improved. The DCT calculation was done with the 
routines implemented in the tool CurveLab (available for 
research purposes at www.curvelet.org). In the proposed 
approach, the CE frames were processed with the wrapping 
algorithm for three scales, with one, eight and sixteen angles 
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respectively, leading to coarsest, medium and finest detail 
coefficients in the DCT domain for each color channel. The 
selected color space was the HSV, since is more similar to 
the physiological perception of human eye [14], and 
therefore more adequate than the standard RGB color space. 
 Given the present framework, different feature sets can be 
formulated, for comparative purposes. The feature set A was 
constructed with all the considered Fm values, the feature set 
B was constructed with the average values E{Fm}, the 
feature set C was constructed with the Color Curvelet 
Covariance values and the feature set D corresponds to 
features in the feature set B and C. The number of statistical 
descriptors Fm used in each dataset was also evaluated. For a 
clear comprehension, the feature set A(µ, σ, E, Ent) 
corresponds to values of all the considered statistical textural 
descriptors of a given CE frame, while the feature set B(µ, σ) 
corresponds to the Color Curvelet Covariance values for the 
statistical textural descriptors µ and σ.  

Instead of measuring the rate of successful recognized 
patterns, more reliable measures for the evaluation of the 
classification performance can be achieved by using the 
sensitivity (true positive rate) and the specificity (100-false 
positive rate) measures. 

Table 1 demonstrates that the most relevant information 
for classification purposes is encoded as high frequency 
content in the DCT finest detail coefficients. It was tested 
also the classification performance of a feature set 
containing the medium and finest detail, but there was no 
significant improvement. 

 

 
 

Given the results in table 1, the following tests only 
considered the finest detail scale DCT coefficients. In table 2 
it is possible to observe the results for the different proposed 
feature sets. Note that the proposed feature set D has a 
classification performance similar to the feature set A, with 
considerably smaller dimensionality of the feature vector. 

 

 
The inclusion of the energy and entropy statistical 

descriptors in the proposed algorithm was also tested, 
although no significant improvement was observed in the 
classification performance comparing with the results 
achieved with only the mean and standard deviation 
descriptors, presented in table 2, therefore not being 
effective the inclusion of these descriptors, since similar 
results are achieved for a feature vector of twice the size. 

 

 

V. CONCLUSION AND FUTURE WORK 
The more significant information content for classification 

purposes is encoded as high frequency information, at the 
DCT scales that correspond to the finest detail coefficients. 
The results clearly show that the Color Curvelet Covariance 
features can be successfully used for CE frames 
classification purposes, being the performance optimal when 
the average of the statistical textural descriptors is also 
included in the feature set. The best statistical textural 
descriptors in the present framework are the mean and the 
standard deviation of the DCT coefficients, given that the 
inclusion of the energy and entropy descriptors does not lead 
to a significant increase in the classification performance. 

Future work will include the extraction of different texture 
descriptors from the DCT and the use of different classifiers.  
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TABLE III 
CLASSIFICATION  PERFORMANCE OF DIFFERENT TEXTURE DESCRIPTORS 

Feature Set A(µ, σ, E, Ent) D(µ, σ, E, Ent) 

Specificity (%) 96.6±0.5 97.5±0.3 
Sensitivity (%) 98±1.1 97.4±0.6 

TABLE II 
CLASSIFICATION  PERFORMANCE OF DIFFERENT FEATURE SETS 

Feature Set A(µ, σ) B(µ, σ) C(µ, σ) D(µ, σ) 

Specificity (%) 96.7±1.2 98.2±0.7 95.9±0.5 97.4±0.4 
Sensitivity (%) 97.5±0.6 92.6±0.8 95.9±0.9 97.2±1.1 

TABLE I 
INFLUENCE OF DETAIL LEVEL IN THE CLASSIFICATION PERFORMANCE 

Detail Level 
Feature set 

Medium 
A(µ, σ) 

Finest 
A(µ, σ) 

Specificity (%) 85.0±1.1 96.7±1.2 
Sensitivity (%) 80.4±2.2 97.0±0.6 
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