
  

  

Abstract—The task of analyzing tissue biopsies performed by 

a pathologist is challenging and time consuming. It suffers from 

intra- and inter-user variability. Computer assisted diagnosis 

(CAD) helps to reduce such variations and speed up the 

diagnostic process. In this paper, we propose an automatic 

computer assisted diagnostic system for renal cell carcinoma 

subtype classification using scale invariant features.   We 

capture the morphological distinctness of various subtypes and 

we have used them to classify a heterogeneous data set of renal 

cell carcinoma biopsy images. Our technique does not require 

color segmentation and minimizes human intervention. We 

circumvent user subjectivity using automated analysis and cater 

for intra-class heterogeneities using multiple class templates. 

We achieve a classification accuracy of 83% using a Bayesian 

classifier.  

Keywords – Renal Cell Carcinoma, Computer Assisted 

Diagnosis, Image Classification, Scale Invariant Features. 

I. INTRODUCTION 

enal cell carcinoma (RCC) accounts for approximately 

3% of adult malignancies and 90-95% of neoplasms 

arising from the kidney [1]. It is characterized by lack of 

early warning signs, diverse clinical manifestations and 

resistance to radiation and chemotherapy. The World Health 

Organization (WHO) classification system has defined 

several subtypes of RCC [2]; the most common subtypes 

include Clear Cell (CC) RCC (83%), Chromophobe (CH) 

RCC (2%), Papillary (PA) RCC (11%) and Oncocytoma 

(ON) RCC (4%). Fig. 1 shows sample images of each 

subtype.  

Clinicians treat these RCC subtypes differently; therefore, 

it is extremely important to identify them accurately for 

treatment planning. Manual categorization of subtypes is a 
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challenging and time-consuming process, involving inter- 

and intra-observer variability.  In addition, for greater impact 

and outreach of translational medicine, CAD systems should 

be designed to provide consistent results for image datasets 

acquired from different clinical labs using varying image 

acquisition protocols.  Moreover, user involvement should 

be minimized to reduce bias and subjectivity. The majority 

of efforts on cancer subtype classification involve manual 

intervention for color segmentation to extract tissue 

morphological features from differentially stained images [3, 

4]. A color segmentation based CAD algorithm may not be 

efficient for dynamic handling of all the variations in a new 

dataset. The scale invariant feature transform (SIFT) is a 

computer vision technique [5] that has been widely used in 

object recognition [6], feature tracking [7] and image 

registration [8]. The SIFT algorithm operates on features 

computed around key points in an image. These key points 

are consistent and recognizable under different 

magnifications and illumination conditions. Descriptors are 

calculated for each key point to encapsulate intensity 

variations in the neighborhood.  RCC subtypes are mainly 

distinguished by their morphology and stain color 

distribution [9]. Table I summarizes distinct characteristics 

of the four subtypes. The location of key points depends on 

the morphology and the descriptors capture intensity 

variations around the neighborhood. Fig. 2 shows a sample 

papillary image with key points. Note that the key points are 

mainly located in the nuclear rich regions and not the 

homogenous lumen regions.  
In this work, we develop an automatic CAD system for 

RCC subtype classification using SIFT features.  Our 

methodology circumvents user involvement in an effort to 
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Fig. 1. (Left to right, top to bottom) Sample images of each subtype, 

a) Papillary (PA), b) Clear Cell (CC), c) Chromophobe (CH), d) 

Oncocytoma (ON).  
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provide consistent results for highly heterogeneous datasets 

with a wide range of intra-class variations. 

II. BACKGROUND 

There have been several works pertaining to the 

development of CAD systems for cancer classification [3, 4, 

10]. Extraction of morphological features has played an 

important role in biological image classification. For 

example, mathematical morphology has been used to classify 

the images as cancerous or non-cancerous [11].    

 

 

 

 

 

 

 

 

 

 

 
TABLE 1 

Hallmarks of RCC Subtypes 

 

Others have based their classification on textural features 

derived from ether multispectral analysis [12], a GLCM 

(gray level co-occurrence matrix) [4, 13], wavelet 

coefficients [10] or a combination of these [14]. Combined 

use of morphological and textural features has also been 

reported. For example, an improvement in the classification 

accuracy of colon cancer is reported by using a fractal 

dimension along with conventional texture analysis [15]. 

GLCM and wavelet based works [4, 16] have reported 

reasonably good classification accuracies, however, their 

color segmentation is done using manually seeded k-means.  

SIFT has been used in some works pertaining to medical 

image processing such as for deformable registration [17], 

image annotation [18] and image classification [19] with the 

goal of assigning keywords to medical X-ray images. X-ray 

images are intensity images and mainly depict bone 

structures. However, RCC images are heterogenously stained 

color images and we use scale invariant feature transform 

(SIFT) to automatically encapsulate the morphology (the 

location/distribution of key points) and texture (key point 

descriptor) into one descriptor. Our system minimizes 

manual intervention while still providing consistent subtype 

classification. 

III. METHODOLOGY 

Fig. 3 shows a flow chart of the complete methodology. 

First, we convert the RGB images to gray scale, then we 

detect key points. Thereafter, we compute a feature 

descriptor around each key point.  Then, we match key point 

descriptors from input images to template images. Next, we 

evaluate the number of matches between each template and 

the test image. We use the number of matches for each sub-

type as features for classification. A detailed description of 

each step is given below.  

A. Image Acquisition 

The image data set consists of hematoxylin and eosin 

(H&E) stained tissue biopsy images. We resected tissue 

samples for this study by total nephrectomy following 

standard pathological procedures to fix, section, and stain the 

tissue. Then, we embedded histological samples in paraffin 

to slice the microscopic sections and stained them with 

Hematoxylin and eosin. Board-certified anatomic 

pathologists using WHO histo-pathological criteria 

diagnosed all the tumors.  We took photomicrographs at a 

total magnification of 200x and 1200x1600 pixels. We 

captured 48 images, 12 for each subtype: CC, CH, ON, and 

PA. 

B. Feature Extraction 

Key Point Detection using the Harris Method: We used the 

Harris corner detection method [20] for key point 

localization. We want to select key points (i.e., corners), 

which will be stable under different scales.  That is, if we 

have two images of the same object each with a different 

scale and view, the same key points should be detected. The 

basic idea is that we should easily recognize these corners by 

looking at the image gradient near a candidate key point. In 

smooth regions, the gradient is near zero.  Near an edge, the 

gradient points strongly in one direction.  Near a corner, the 

gradient points strongly in multiple directions. 

Key point Feature Descriptor: We evaluate the feature 

descriptor around a 16 16×  neighborhood of detected key 

points as described in [5].  Briefly, the gradient magnitudes 

in the 16 16×  neighborhood are summarized in 4 4× sub 

regions by calculating the histogram of normalized gradient 

magnitudes in eight directional bins. Fig. 4 shows the 

Subtype Morphology Stain color 

CC Solid growth pattern, condensed and 

hyper chromatic nuclei. 

Clear cytoplasm 

CH Large polygonal cells arranged in solid 

nests or tubules. 

Clear area/halo 

around nucleus,  

ON Granular cytoplasm, cells arranged in 

nests, or trabecular patterns, round 

and centrally located nuclei.  

Abundant pink 

cytoplasm 

PA Tubulo-papillary architecture granular cytoplasm 
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Fig. 3. Flowchart for Overall Methodology 

Input 

image Gray scale image 

Key Point Detection 

Feature Descriptor 

Key Point Matching Classification 

 
Fig. 2. Papillary image with key points 
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gradient values and associated descriptor for a sample key 

point.  The final descriptor length is 128 (8 bins for 16 

regions), see Fig 4(bottom right).  

C. Key point Matching  

We use minimization of sum of squared differences (SSD) 

to match the key points in a sample image with the key 

points in the template images. We perform initial analysis 

using a standard template image for one subtype and 

calculate the number of matching key points with standard 

templates of other subtypes. We do this to test the efficacy of 

SIFT matching for RCC subtype classification. Fig. 5 shows 

the results. It is clear from Table II that there are more  

matches (diagonal elements) with the same subtype class 

than with different classes.  

Inter-subtype (non-diagonal elements) matches reflect the 

neighborhood similarities embedded within certain key 

points due to image components that are ubiquitous among 

most or all subtypes. For example, key points around large 

lumen spaces and necrotic regions may match key points 

from other classes that have similar neighborhood gradients.  

In addition, sometimes images from within classes exhibit 

different key point descriptors due to intra-class 

heterogeneity in the biopsy image data. These limitations add 

to the classification error. We use two template images for 

each subtype so that intra-class variations can be 

accommodated.  We match each input image with the 

template images of each subtype and use the average number 

of matches from the two templates as a feature for 

classification.  We normalize the number of matches by 

dividing by the product of the number of points in the test 

and template images.  Table III shows the mean and standard 

deviation of matches among image subtypes.  

 
TABLE II 

Number of SIFT Matches between Template Pairs. 

 CC CH ON PA 

CC 18 13 5 11 

CH 5 10 4 5 

ON 7 16 20 10 

PA 7 6 4 13 

 

D. Subtype Classification 

We used a Bayesian classifier to classify a set of 40 test 

images (10 for each subtype). We selected the templates 

from images that are not part of the test set. To estimate the 

error of classification, we used leave one out cross validation 

(LOO CV).   
 

TABLE III 

Mean and Standard Deviation of Number of SIFT Matches between 

Templates and Test Images. 

 CC CH ON PA 

CC .0168±.004 .0527±.004 .03±.004 .026±.003 

CH .0142±.001 .0571±.007 .0341±.003 .029±.003 

ON .0132±.002 .0547±.005 .046±.011 .031±.004 

PA .0129±.001 .0478±.003 .039±.003 .0365±.003 

 
TABLE IV 

Confusion Matrix for RCC Subtype Classification using SIFT. 

 CC CH ON PA 

CC 8 2 0 0 

CH 1 8 1 0 

ON 0 1 9 0 

PA 1 1 0 8 

 

IV. RESULTS AND CONCLUSION 

Table IV shows the confusion matrix for classification. 

Fig. 6. shows the scatter plot of each test image using three 

out of four features. We achieved an accuracy of 83% among 

the four subtypes. SIFT descriptors encapsulated the 

intensity variations around a key point. Lumen spaces and 

necrotic regions were common in all of the subtypes. 

Therefore, sift descriptors near lumen features will result in 

considerable numbers of matches with templates from other 

classes. In addition, intra-class heterogeneity contributes to 

lesser number of matches with the respective templates and 

more numbers of matches with templates from other classes.  

For example, in Fig. 7, the image on the left is a Clear Cell 

RCC but our system classified it incorrectly because it is 

very different from a typical Clear Cell image (Fig 7, right 

image). However, our method is automatic and attempts to 

 
Fig. 4.   Screenshot of the GUI showing a sample key point 

(top left), a 16x16 neighborhood around key point (top right), 

plot of gradient magnitudes (bottom left) and normalized 

image gradient descriptor summarized in 4x4 region (bottom 

right). 

 
Fig. 5 Matching of Chromophobe template with each subtype (A) 

CH-CH (B) CH-CC (C) CH-ON (D) CH-PA SIFT matching 
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Fig. 6. Number of Matches to PA, CC, ON Templates. CC samples 

are red, CH are blue, ON are magenta, and PA are green. 

handle intra-class heterogeneities by using multiple 

templates.    

V. DISCUSSION AND FUTURE WORK 

Our classification accuracy (83%) is encouraging for a 

four class system since there is no manual interaction 

involved. Still, other works have reported higher accuracies 

using more user interaction. We favor automatic methods, 

because user interaction not only takes effort but also 

introduces subjectivity.  

Biological images are immensely diverse and creation of 

an ideal template set with all possible variations is not 

always feasible, especially for relatively rare diseases where 

training images may be scarce.  We have used two 

representative template images of each subtype in an attempt 

to account for possible intra class heterogeneities, but 

selection of more templates may be justified, depending on 

the expected heterogeneity of images.  A technique with 

expert knowledge based template set selection might result in 

increased classification accuracy, but care should be taken to 

not just include ideal images, but also to include some low 

quality images in template sets to match all possible inputs.   

In the future, we plan to extend our analysis using a 

variable size descriptor (proportional to cell size) which 

includes stain color information, (color SIFT). This would 

help us encapsulate tissue morphology, stain color, and 

texture into one descriptor. In addition, we can use the 

correlation of tissue features, such as cell size, with the 

descriptors to create a codebook to map tissue morphology 

back to key point descriptors. We expect that this 

methodology can easily extend to the classification of other 

medical images, including other types of cancers, or imaging 

modalities.  
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