
  

  

Abstract— This paper presents a fast methodology for the 
estimation of informative cell features from densely clustered 
RGB tissue images. The features estimated include nuclei 
count, nuclei size distribution, nuclei eccentricity (roundness) 
distribution, nuclei closeness distribution and cluster size 
distribution. Our methodology is a three step technique. Firstly, 
we generate a binary nuclei mask from an RGB tissue image by 
color segmentation. Secondly, we segment nuclei clusters 
present in the binary mask into individual nuclei by concavity 
detection and ellipse fitting. Finally, we estimate informative 
features for every nuclei and their distribution for the complete 
image. The main focus of our work is the development of a fast 
and accurate nuclei cluster segmentation technique for densely 
clustered tissue images. We also developed a simple graphical 
user interface (GUI) for our application which requires 
minimal user interaction and can efficiently extract features 
from nuclei clusters, making it feasible for clinical applications 
(less than 2 minutes for a 1.9 megapixel tissue image). 

I. INTRODUCTION 
ytological features of a tissue image including nuclei 
count, nuclei size distribution, and nuclei shape 

distribution are important features for decision making in 
pathology. They have been cited by various authors for 
cancer grading, cancer subtype classification, extraction of 
the malignant portion of a tissue image, and analysis of cell 
therapy progress [1, 2, 3, 4].  

Extraction of these features from images in which nuclei 
are not clustered is possible by using image segmentation. 
However, in pathological conditions, nuclei in tissues are 
mostly clustered, necessitating cluster segmentation. Recent 
work in cluster segmentation [4, 5, 6] shows problems in 
segmenting complex clusters or suffers from long processing 
time because of the complex methodology involved. 
Previous work suggested a nuclei cluster segmentation 
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technique [7]. In this paper, we 1) suggest improvements to 
that technique, 2) present computational time analysis for 
cluster segmentation of different types of images, 3) describe 
informative features extracted from tissue images using the 
segmented nuclei, 4) describe the graphical user interface 
(GUI) developed for this methodology, and 5) evaluate 
features for a set of tissue images and compare them. The 
overall block diagram of our method is presented in figure 1. 

II. COLOR SEGMENTATION 
Photo micrographs of a stained biopsy tissue section are 

RGB images with various entities in a tissue slice. These 
entities include nuclei, glands, cytoplasm and red blood cells 
appearing as different colors. Therefore, the first step in our 
algorithm involves color segmentation of the RGB tissue 
image to obtain a binary mask of the nuclei. With the aim of 
developing a methodology that may be used for different 
kinds of stained tissue samples, we have used user-
interactive K-means clustering for color segmentation. K-
means clustering [8] divides colored pixels of an image into 
K clusters by minimizing the energy functional E, given by 
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where E is the sum of the Euclidian distance between pixels 
xj belonging to cluster Si and its mean ci summed for all the 
clusters. In a user-interactive variation of K-means 
clustering [9], the user selects approximate seed colors 
(cluster means) for nuclei and background shades. The GUI 
provides the user with flexibility to choose the number of 
nuclei and background shades and then change the means 
slightly with the sliders in the GUI until a visually suitable 
mask is obtained. Figure 3(b) is the binary nuclei mask for 
the RGB tissue image in Figure 3(a). 
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III. CLUSTER SEGMENTATION 
The nuclei mask obtained by color segmentation usually 

has clusters of nuclei. Therefore, the next step involves 
segmentation of these clusters into individual nuclei. 
Previous work suggested a methodology for cluster 
segmentation using concavity detection and ellipse fitting 
[7]. The methodology used in this paper is similar with some 
improvements.  

A. Preprocessing 
The preprocessing steps that we used are the same as 

those mentioned in previous work [7]. The nuclei mask 
obtained from color segmentation typically has holes in the 
nuclei mask as well as noise. Our methodology is edge-
based and holes in the mask can lead to false segmentation. 
Therefore, we fill the holes using morphological 
reconstruction [10]. Noise in the nuclei mask is due to 
misclassification by K-means or due to the presence of small 
portions of nuclei shades in the background of a stained 
tissue sample. Noise removal is performed using the 
morphological opening operation. 

B. Concavity detection 
After preprocessing, every cluster in the image is treated 

separately. Figure 2 illustrates cluster segmentation steps for 
a cluster. A concavity is the point on the cluster edge where 
two individual nuclei overlap and is therefore the point 
where a cluster should be segmented. Concavity detection 
can be carried out using the cross product of adjacent 
tangential vectors while moving along the edge in one 
direction [7]. In this method, we divide the cluster edge into 
piecewise segments and determine the tangential vectors for 
every segment using endpoints, given by 
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where a and b are two adjacent tangential vectors defined by 
three adjacent points on the cluster edge, p1, p2, and p3. In 
our case, when the z-component is zero for the a and b 

vectors, the cross-product extends in the z-direction and 
sin(θ) can be given by 
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The value of sin(θ) is in the positive z-direction for  
concave portions of the edge and in the negative z-direction 
for convex portions as shown in Figure 2(a). Figure 2(b) 
illustrates the variation of sin(θ) along the cluster edge. We 
can find the concavity by detecting zero-crossings of sin(θ) 
and finding maxima between two crossings. As compared to 
previous work [7], this methodology doesn’t need a fixed 
threshold. 

C. Straight line segmentation 
Straight line segmentation is the first step in the 

segmentation of clusters. First, the user interactively selects 
possible single nuclei. From these, the approximate nuclei 
size, A, is calculated. Straight line (SL) segmentation of 
clusters is an iterative process.  At each step, there is a check 
on the size of resulting nuclei compared to A, given by 

 

Resulting nuclei area > threshold × A. (4) 
 

The threshold is decided depending on single nuclei-size 
variation in the tissue image. We obtained good results for 
different types of images using a value of 0.3. For SL 
segmentation, we calculate the distance between all 
concavities for a cluster and connect the concavities starting 
with the ones closest to each other. The concavities are 
connected only if the larger portion of the connecting line 
segment lies inside the cluster. Figure 2(c) depicts the SL 
segmented regions of the cluster in Figure 2(a). SL 
segmentation may lead to over segmentation of the cluster, 
but ellipse fitting overcomes this issue. 

D. Ellipse fitting 
We adopt an elliptical model for nuclei [6]. We have used 

a direct ellipse fitting method proposed by Fitzgibbon et al. 
[11] due to its accuracy and simplicity of implementation. 
We propose an improved methodology of using direct 
ellipse fitting on regions of SL segmented cluster as 

a 
b b 

a 

Figure 2: Cluster segmentation steps for a preprocessed cluster from
papillary renal cell carcinoma tissue image, (a) nuclei cluster mask
with vector a, b and direction of sin(θ) marked at concave and convex
edge points, (b) graph depicting variation in sin(θ) with segment
number of the cluster edge, (c) straight line segmented cluster with
concavities marked, (d) ellipse fitting result. 

(a)   (b) 

(c)   (d) 

Figure 3: Color and cluster segmentation for an oncocytoma renal cell 
carcinoma tissue image. (a) RGB image shown in gray scale, (b) 
binary nuclei mask, (c) individual nuclei marked on RGB tissue 
image, (d) individual nuclei marked on nuclei mask 

(a)   (b) 

(c)   (d) 
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compared to previous work [7].  
Firstly, we sort the regions of a cluster from SL 

segmentation in decreasing order of precedence depending 
on the portion of the cluster edge it includes. We start ellipse 
fitting with the region with highest precedence. The data 
provided to the ellipse fitting algorithm is the portion of SL 
segmented region that is a part of the cluster edge. If this 
data is insufficient or lies on a straight line, then the 
complete edge of the SL segmented region is provided.  

Ellipse fitting is an iterative process. At every step we 
check the overlap between the present ellipse and previously 
fitted ellipses. To avoid over segmentation, only ellipses 
with a larger portion of non-overlapping regions are 
selected. To reduce the number of missed detections, once 
the ellipse fitting is completed for all clusters, we check if 
there is any portion of the mask which was not considered a 
nucleus but is of sufficient size to be one. The boundaries of 
such regions are provided to the ellipse fitting algorithm. 
Figure 2(d) shows the result of ellipse fitting. Figure 3(c) & 
3(d) shows final segmentation results of the tissue sample in 
figure 3(a). 

IV. INFORMATIVE FEATURE EXTRACTION  
After ellipse fitting is completed, every nucleus has been 

modeled as an ellipse using basic parameters such as major 
axis a, minor axis b, center (x, y) and orientation α. With the 
help of these parameters, we can extract multiple 
informative features of the tissue image. We illustrate four 
such features in our result. The first three depend on 
individual nuclei parameters and the last depends on the 
aggregation pattern of the nuclei. 

A. Nuclei size distribution 
Nucleus size can be approximated by calculating the area 

of the elliptical nucleus, given by 
 baCell Area ××= π   (5) 
Nuclei size distribution for the complete tissue image is 
estimated by calculating areas for all nuclei. 

B. Nuclei shape distribution 
For nuclei with a purely elliptical model, one of the 

important measures for shape is eccentricity, given by 
 

a
btricityCell eccen 2

2
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If the eccentricity of the nucleus is close to zero, then the 
nucleus is more circular.  

C.  Nuclei closeness distribution 
The average distance between every nucleus and the 

nuclei in its neighborhood estimates the overall closeness of 
nuclei in the tissue image. We calculate the average distance 
of every nucleus to its five closest nuclei for closeness 
measurement, given by 

 ( ) ( )∑ −−
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where (xi, yi) are the five closest nuclei centers and (x, y) is 
the center of the five nuclei.  

D. Cluster size distribution 
In certain cases, even when the average closeness measure 

of nuclei is similar, the images appear to be different based 
on the size of the clusters. We tried to capture this feature of 
the images by providing a measure of cluster size in terms of 
the number of nuclei contained in each cluster. 

V. GRAPHICAL USER INTERFACE 
A simple GUI was developed in Matlab for this 

application. The GUI works in a sequential order and we 
provide the user with step by step instructions and enable 
relevant push-buttons at each step. After selecting an image,  
the user’s involvement is required at only three steps: 1) 
selecting the number of seed colors for background shades 
and nuclear shades and selecting the seeds themselves, 2) 
adjusting the nuclei mask by varying the means of the 
clusters, and 3) clicking on samples of single nuclei for 
approximating nuclei size. After cluster segmentation, the 
user can view distribution histograms of different features, 
including their mean, median, and standard deviation. Also, 
the user can view segmented nuclei boundaries on the 
desired image (RGB tissue image, binary mask and 
combination options are available). Figure 4 shows a 
snapshot of the GUI after cluster segmentation.  

VI. RESULTS 
In order to show the importance of the features extracted 

by our methodology, we compared the features of four tissue 
images. Out of these four images, two are renal cell 
carcinoma (RCC) tissue images and other two are head & 
neck (H&N) cancer images. In addition, to evaluate 
repeatability of the technique, we manually selected four 
sub-portions of every tissue image and extracted features for 
each sub-portion. Figure 5(a) - (d) shows one sub portion 
from each image with their respective time delay and cell 
count. The computation time for cluster segmentation is 
dependent on the number of cells in the image. The average 
computation time was less than 2 minutes for any image in a 
dataset of 58 1.9 megapixel RCC images.  

Figure 4: Snapshot of GUI after cluster segmentation  
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We calculated the average distribution for every tissue 

image from its sub-portions, and then we plotted comparison 
graphs between the four tissue images for all four features. 
The first graph in figure 5(e) compares the nuclei size 
distribution in four tissue images. The average nuclei size is 
smallest in the first image and largest in the fourth image, 
therefore the size distribution for the first image has its 
maxima at a very lower value as compared to the fourth 
image. The second graph in figure 5(f) compares nuclei 
shape distributions measured as the eccentricity of nuclei. 
Image 2 and image 4 have a higher percentage of elliptical 
nuclei as compared to circular nuclei. As such, their nuclei 
shape distribution maxima is closer to one. Moreover, image 
1 has mostly circular nuclei; as such, its distribution has a 
higher percentage of nuclei for lower eccentricities 
compared to other images. The third graph in figure 5(g) 
compares the nuclei closeness distribution of four images. 
Nuclei are closely distributed in image 2 and image 3 
compared to image 1 and image 4, therefore the maxima of 
their distribution is lower on the x-axis. The fourth graph in 
figure 5(h) compares the aggregation patterns of nuclei in 
four images. Clustering of nuclei is greater in image 2 and 
image 3. Therefore, the distributions of cluster size for 

image 2 and image 3 are higher at larger size clusters 
separating them from the other two images. Also, only 
image 3 has long clusters, so its distribution is present for 
higher values on the x-axis. The four tissue images can be 
differentiated using these comparison graphs. Image 3 can 
be differentiated from all other images using cluster size 
distribution. Image 1 can be differentiated using nuclei size 
distribution. Image 2 and image 4 can be differentiated from 
all other images using nuclei eccentricity distribution and 
from each other using nuclei closeness distribution.  

VII. CONCLUSION 
We have considered a set of four images in our results and 

provided users with sample images as well as feature 
comparison graphs. As an extension of this work, we plan to 
extract features from a larger image dataset and classify the 
images using these features. We have shown that, with good 
nuclei cluster segmentation and elliptical modeling of nuclei, 
we can generate informative image features. This work can 
be extremely helpful in image classification and image 
grading of pathological images in clinical settings.  
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T= 72.46 seconds, count = 424 
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T= 75.73 seconds, count = 481 T= 22.11 seconds, count =235  
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(f) 

T= 27.93 seconds, count = 204
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