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Abstract— Labeled molecular markers are an important tool
in molecular biology. This work presents a method for the
automatic identification of molecular markers in dot blot
images. The method detects the location of markers in the
image and their size. An experiment was made with 6 test
images, which were used to produce an additional set of 222
images with various rotation, translation, contrast and noise
levels. Over 7500 markers were identified automatically and
compared with reference values obtained manually. The RMS
error for the marker positioning in the original test images
were between 1.1 and 3.8 pixels, which is about 1/10 of the
typical radius (26 pixels). The method proposed was found
to be almost insensitive to grid rotation and translation, and
reasonably robust to image contrast changes and presence of
noise.

I. INTRODUCTION

Labeled molecular markers are commonly used in molec-
ular biology as probes to identify, by hybridization, the
corresponding DNA template from a large number of tem-
plate molecules. Therefore, a probe can only confirm the
presence or absence of a specific locus. This technique is an
important tool in molecular biology, particularly to evaluate
simultaneously the expression of numerous genes, and for the
identification of microorganisms for which DNA-signatures
or taxa-specific loci have been validated as probes [1] [2].

Macroarrays designed for detection of different bacteria
have already been proposed for a large variety of targets
including bacteria pathogenic on potato [3], phytopathogenic
Pseudomonas [1], Lactobacillus species [4], Pythium species
[5] and Aeromonas spp. [6], among others. These assays
are reported as being specific for the target bacteria with
good inter-experiment consistency of results. When properly
validated, macroarrays provide, at this time, a much better
cost-benefit ratio for use in routine analysis than the much
more expensive and elaborate microarray platforms.

In this work we used a macroarray prototype developed
for detection of plant pathogenic bacteria [7]. Each molecular
marker was blotted into a nylon membrane as a dot, to form
a dot blot. A dot blot has a pre-defined grid of evenly spaced
dots, for example 48 dots arranged in 8 rows and 6 columns,
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as the images presented in figure 1.
The dot blot images were acquired with a GS-800 densito-

Fig. 1. Dot blot images with a grid of 8x6 Molecular Markers.

meter (Bio-rad, Hercules, CA), producing grayscale images
with 1100 by 820 pixels (902000). An ideal positive dot
will be a dark mark in a light gray background, whereas
a negative dot will ideally be undistinguishable from the
background. The gray level intensity of the background and
the amount of noise varies considerably from image to image.

The test images used (T1 to T6) are presented in figure 1.
All have eight positive controls at the corners, in locations
(1,1), (2,1), (1,6), (2,6), (7,1), (8,1), (7,6) and (8,6), and six
negative controls located at (5,1), (6,1), (3,6), (4,6), (7,5) and
(8,5). Although the positive controls are expected to result in
a clear mark signature, this is not always the case (e.g. the
bottom right corner marks of image T3). The gray intensity
of the background is generally uniform within an image, but
noise is present in some areas, well noticed in image T3.
This type of noise can disturb the identification of nearby
marks.

The analysis of dot blot images is currently based on
the human identification of positive / negative dots, and
interpretation / classification of the results. The process is
time consuming, subjective and consequently erratic, thus
the interest of developing a fully automatic system based
on image processing and data classification techniques. The
purpose of this work is to present a method for the automatic
identification of molecular markers in dot blot images. The
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robustness of the method to rotation, translation and noise is
evaluated using the set of test images.

II. METHODOLOGY

The algorithm developed receives as input a digital image
and assumes prior knowledge of the grid size (number of
dots per line and column). The process can be divided in
three stages: initial estimate of the grid orientation, image to
grid matching, final identification of markers.

A. Initial estimate of the grid orientation

Initially, the identification of very dark dots in the
grayscale image G is performed. A binary image (B) is
obtained by thresholding G, using a threshold value obtained
by the Otsu method [8]. As an illustration, figure 2 shows the
result of this process applied to image T1 (figure 1 top left),
where the threshold value obtained by the Otsu method was
0.49 (in the range 0 to 1). The next step is noise reduction,
using the morphological operation opening (erosion followed
by dilation) with a circular structuring element of 5 pixel
radius [9]. Once the very small objects are removed from
the binary image, morphological reconstruction, using the
implementation on MATLAB [10], is used to fill holes in
the remaining objects. The center of mass of each object
is computed, and those objects whose radius is at least 15
pixels are selected as a marker. For the example of figure 2,
25 markers were obtained.

Fig. 2. Image T1 (left) with binary images obtained by thresholding
(center) followed by noise removal (right).

The set of markers identified is used to establish the
orientation of the grid. This is done by searching for the
directions between all marker pairs. The assumption is that
the two main directions of the grid are orthogonal. The angles
between all pairs of markers are computed, reducing the
results to the domain [0, 90◦[. For n markers, n(n − 1)/2
directions are computed. Figure 3 illustrates the process of
computing the direction between marker M1 and markers
M2, M3, M4 and M5. In this case the results for M1-M2 and
M1-M3 are the same, as the two directions are orthogonal.
With all directions between marker pairs computed, the
orientation of the grid (α) is obtained as the most frequent
angle, using a bin search of 2 degrees. The original image
is then rotated by α, resulting in a new version of the image
with the grid nearly aligned with the image.

Fig. 3. Main direction search for the initial estimate of the grid orientation.

B. Image to grid matching

Once the initial correction of the image orientation is done,
it is necessary to identify the correspondence between the
markers detected by thresholding and the grid. The image
is divided in sections, considering the size of the image and
the number of grid elements (in columns and rows). Each
marker is thus assigned a position in the grid. An ideal grid
is then mapped into the image, considering the possibility of
a rotation (α), a scale parameter (λ) and a translation (X0

and Y0). Figure 4 illustrates this process.

Fig. 4. Image to grid matching.

The position (Xi,Yi) of a marker (i) in the digital image
is obtained from the ideal grid co-ordinates (X ′

i ,Y
′
i ) using

equation (1). The system of equations (1) is solved by the
least square errors method, equations (2, 3, 4), where the 4
unknowns (matrix W ) account for the translation, rotation
and scale [11]. The observables (L) and coefficients (A)
matrices have 2 lines for each tie point, obtained for each
marker paired between the ideal grid and the binary image.

Xi = X0 − λ sinαY
′

i + λ cos αX
′

i

Yi = Y0 + λ sinαX
′

i + λ cos αY
′

i

(1)

L = AW ⇔W = (AT A)−1AT L (2)

L =

 Xi

Yi

...
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′

i X
′
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 (3)
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W =


X0

Y0

λ sinα
λ cos α

 (4)

C. Final identification of markers

Once the image to grid mapping is established, a local
thresholding is performed to detect the possible presence of
a marker in each section of the image. The threshold value
is again obtained by the Otsu method [8], and the noise
removal procedure is the same as described in section 2.1.
For the example with image T1 (figure 2), only 25 markers
were detected in the first step, enough to estimate the grid
orientation, while the local approach detected all 41 markers
visible in the image.

III. EXPERIMENTAL SETUP

In order to evaluate the method developed for the auto-
matic identification of markers, an experiment was prepared
using the 6 test images presented in figure 1. These images
were all obtained with a grid of 8 by 6, but with different
characteristics in terms of contrast and noise.

For each test image, the visible markers were identified
manually, in terms of center location (x, y) and radius (r).
The positioning error (d) of a marker is computed as the
Euclidean distance between the coordinates of its center
obtained by manual and automatic processes. The average
positioning error for an image dRMS is computed as the
Root Mean Square (RMS) of all marker errors.

Each test image was subjected to transformations (rotation,
translation, contrast and noise) in order to evaluate the
ability of the proposed method to identify the markers under
different conditions. A total of 8 new images were obtained
for each test image, by applying a rotation of an angle (θ)
between −40◦ and 40◦, with increment of 10◦. The original
test images were also subjected to 9 translations, of 50, 100,
200 in X, in Y, and in both X and Y. The contrast of the
original test images was changed using a gamma function
[9] with the following values for γ: 0.1, 0.2, 0.4, 0.6, 0.8,
2, 4, 6, 8. Two types of noise were also added to the test
images: Salt & Pepper (f - fraction of contaminated pixels
of 1.0%, 1.5%, 2.0%, 2.5%, 3.0%) and zero mean Gaussian
(with σ values of 0.01, 0.02, 0.04, 0.06 and 0.10). A total of
222 images were tested (1+8+9+9+10 for each test image),
with over 7500 markers identified and evaluated all together.

IV. RESULTS

A summary of the results for the 6 original test images is
presented in table I. The table shows the number of markers
identified in each image, and the number of markers with
positioning error (d) below 1 pixel, between 1 and 2 pixels,
and higher than 2 pixels. The maximum value of d and the
RMS error for the whole image are also included. In the
bottom part of table I two estimates of the marker radius are
presented: the average radius of all marks identified manually

TABLE I
SUMMARY OF RESULTS FOR THE 6 ORIGINAL TEST IMAGES (SEE TEXT

FOR DETAILS).

T1 T2 T3 T4 T5 T6
#markers 41 40 30 31 35 29
with d < 1 25 3 3 4 6 5
with 1 ≤ d ≤ 2 13 9 12 7 5 12
with d > 2 3 28 15 20 24 12
dmax 2.4 7.8 4.3 6.6 4.2 5.7
dRMS 1.1 3.8 2.3 2.8 2.6 2.4
Rman 26.2 26.6 26.2 26.4 26.1 26.0
Rauto 26.3 26.1 26.7 26.3 25.2 25.4

TABLE II
AVERAGE RMS ERRORS FOR THE ROTATION EXPERIMENT.

Rotation T1 T2 T3 T4 T5 T6
θ = −40◦ 1.1 3.5 2.4 2.3 2.5 2.5
θ = −30◦ 1.1 3.5 2.4 2.3 2.5 2.4
θ = −20◦ 1.1 3.6 2.4 2.3 2.5 2.4
θ = −10◦ 1.1 3.6 2.4 2.5 2.6 2.4
θ = 0◦ 1.1 3.8 2.3 2.8 2.6 2.4
θ = +10◦ 1.1 3.6 2.3 2.6 2.6 2.4
θ = +20◦ 1.1 3.6 2.4 2.3 2.5 2.4
θ = +30◦ 1.1 3.5 2.4 2.4 2.5 2.5
θ = +40◦ 1.1 3.5 2.4 2.3 2.5 2.5

(Rman), and the average radius computed by the automatic
process (Rauto).

The RMS errors for the image rotation experiment are
presented in table II. There are almost no changes in RMS
error with the grid orientation, which shows that the method
is robust to rotation. The test for translation also showed that
the method is robust. In 3 images the RMS errors were the
same for all 9 translations tested and for the other 3 there
were only small variations (less than 0.03).

The results for the image contrast changes are presented
in table III. In this case there are considerable differences in
the RMS errors as the γ coefficient varies. For those images
where the original had a good contrast between background
and foreground (markers), the RMS errors remain low, close
to the reference error of the original image, for all γ values
tested, except for image T3 that has considerable noise. For
the two test images that were originally very dark (T2 and
T4), with low contrast between markers and background,
there are some variability in the RMS error, and for very
high values of γ the marker detection in fact fails.

The results for the experiment with Salt & Pepper and zero
mean Gaussian noise are presented in table IV. Some images
are nearly unaffected by the presence of noise (e.g. T1 and
T5) while other are greatly affected. The results presented
in tables III and IV suggest that the mark detection is more
affected by low contrast than by noise. However, the images
were subjected to extreme changes in the contrast experi-
ment, whereas only moderate noise intensity was tested.
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TABLE III
AVERAGE RMS ERRORS FOR THE CONTRAST EXPERIMENT.

Gamma factor T1 T2 T3 T4 T5 T6
γ = 0.1 1.6 3.4 4.0 5.5 2.1 2.2
γ = 0.2 1.6 4.6 7.8 2.0 2.1 2.6
γ = 0.4 2.2 5.2 4.3 3.0 2.2 6.0
γ = 0.6 2.1 6.0 3.5 2.0 2.1 2.7
γ = 0.8 2.1 2.2 3.0 4.1 3.0 2.4
γ = 1 1.1 3.8 2.3 2.8 2.6 2.4
γ = 2 1.2 3.1 3.1 2.1 2.4 3.0
γ = 4 1.2 2.6 5.0 4.0 2.5 3.8
γ = 6 1.2 fail 2.0 fail 3.0 2.1
γ = 8 1.2 fail 2.1 fail 3.0 1.8

TABLE IV
AVERAGE RMS ERRORS FOR THE NOISE EXPERIMENT.

Noise type, level T1 T2 T3 T4 T5 T6
S&P, f = 1.0% 1.9 2.2 2.7 3.7 2.1 4.8
S&P, f = 1.5% 1.8 2.2 2.6 3.4 2.1 4.9
S&P, f = 2.0% 2.0 2.1 2.7 3.5 2.1 5.0
S&P, f = 2.5% 1.7 2.3 3.4 6.8 2.2 4.9
S&P, f = 3.0% 1.6 7.4 2.6 5.6 2.9 3.3
Gaussian, σ = 0.01 1.7 5.7 2.8 2.7 2.2 2.6
Gaussian, σ = 0.02 1.7 4.8 3.2 2.5 2.2 3.1
Gaussian, σ = 0.04 1.8 5.8 3.8 2.4 2.0 6.4
Gaussian, σ = 0.06 1.7 5.7 4.5 2.4 2.5 2.6
Gaussian, σ = 0.10 1.8 3.3 4.6 2.6 2.6 3.1

V. CONCLUSIONS

The proposed method for the automatic identification of
molecular markers in dot blot images proved to be effective.
The detection process was found to be robust to rotation and
translation of the grid, and to variations in contrast and noise
level in the image. All visible marks were detected in 218
out of 222 images tested. The only images (4) that the mark
detection failed had very low contrast originally, and were
subjected to a γ correction with high value (6 and 8).

The experiment with a manual identification of markers
position and size showed that the marker size (radius) was
correctly detected by the automatic system. The difference
between the manual and automatic estimation of the marker
radius was found to be less than 1 pixel (or less than 4%, as
the typical value for the radius is 26 pixels), which can be
considered a good result. The RMS error in positioning (in
XY) the molecular marker centers was between 1.1 and 3.8
in the original images. The estimate of the location of the
molecular marker centers was found to be robust to rotation
and translation, and to vary within reasonable limits with
changes in contrast and noise level.

The final goal of this work is to develop an automatic
system to fully process the dot blot images. This includes the
identification of the grid, with the position and size of the
molecular markers, but also the extraction of a probability of
being ON for each mark. The development of an automatic
application for the analysis of dot blot images, will increase

the reliability of macroarrays used for bacteria detection,
and is therefore an important contribution in diagnostic
microbiology.
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