
 

Abstract—Dengue fever has become a major international

public health concern in recent decades. As dengue fever not

have available vaccine or specific treatment, the only known

form to prevent the illness is by applying strategies to control its

vector, the Aedes aegypti mosquito. Ovitraps, special traps to

collect mosquito eggs, are used to detect Aedes aegypti presence

and to approximate the gauge of the adult mosquitoes

population in the environment by counting the number of eggs

laid in an trap. This counting is usually performed in a manual,

visual and non-automatic form. This work proposes a new

automatic method to automatically count the number of eggs in

digital images of ovitraps based on image processing techniques

(color systems exploration) and k-Means clustering algorithm.

The proposed method performs an improvement on the results

when compared with previous studies. 

I. INTRODUCTION

ENGUE fever is currently the most globally

widespread insect-born virus infection, causing 50 -

100 million cases per year in more than 100 endemic

countries. Dengue fever is found in tropical and sub-tropical

regions around the world, predominantly in urban and semi-

urban areas. Dengue virus is transmitted to humans mainly

by Aedes aegypti mosquito, which is also vector of yellow

fever.

D

The first historic case of dengue fever in the world was

recognized in Java Island in 1779. In Americas, the disease

was related over 200 years ago, with epidemics in Caribbean

and United States. In 1982, the first Brazilian epidemic was

confirmed by laboratorial tests in Boa Vista (State of

Paraná), although it had had indications of epidemics since

1923 [1].

The spread of dengue fever is attributed to the expanding

geographic distribution of the four dengue viruses and their

vectors. The rapid rising of the urban mosquito population is

bringing even higher number of people into contact with this

vector, especially in areas that are appropriate for mosquito

breeding, e.g., locals were where household water storage is

common and where solid waste disposal services are

inadequate [2].
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As dengue fever does not have available vaccine or

specific treatment yet, the only form to prevent the illness is

to apply strategies of vector control which demand that areas

of risk and periods of risk are identified [3]. Entomological

surveillance is used to indicate priority areas to allow

stratification of control measures and to help the decision of

which control strategies will be used at a certain time. The

primary purpose, however, should be to identify areas and

periods of time when it is most probable dengue fever

occurrence [4]. 

Dengue vector surveillance is classically based on the

Premise Index and the Breteau Index, both of which use

visual detection of larvae in domestic containers. Aedes

aegypti larvae visualization is an inaccurate technique

because of the larvae's ability to escape rapidly and their

capacity to remain submerged for long periods of time. The

percentage of premises or containers where Aedes aegypti

larvae are found does not provide information regarding the

mosquito population density (registering as positive a

container whether just one or thousands larvae are present,).

These indices do not seem to be an adequate way of meeting

vector surveillance needs [5].

Ovitrap surveys could be considered an effective and

efficient technique for detecting and monitoring Aedes

aegypti populations at low densities [6]. Using ovitraps for

vector surveillance seems to be a current trend in dengue

endemic countries, since this method is more sensitive and it

allows better assessment of infestation densities than the

conventionally used methods based on the search for larvae

[5, 7, 8].

Next Section describes the scenario which this study was

performed, the images acquired and the new segmentation

algorithm developed for the automatic counting of Aedes

aegypti eggs in ovitraps. After this, the results are presented

and analyzed in Section III. Section IV concludes the paper

and relates some commentaries on our results.

II.A GEOGRAPHIC INFORMATIONAL SYSTEM FOR DENGUE CONTROL

Health Technology Assessment should inform health

decision-makers about the introduction of new healthcare

technologies. Challenging image acquisition and analysis

problems require a unique mix of hardware support, analysis

capabilities, and image processing algorithms. In these

situations, scientists and engineers need an open and flexible

architecture to create a customized workflow without

wasting time on low-level details. 
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A Geographic Information System (GIS) is an automated

computer-based system with the ability to capture, retrieve,

manage, display and evaluate large quantities of spatial and

temporal data in a geographical context. The system

comprises hardware (computer and printer), software (GIS

software), digitized base maps, information and a whole set

of procedures such as data collection, management and

updating. 

Specific diseases and public health resources can be

mapped in relation to their surrounding environment and

existing health and social infrastructures. Such information

when mapped together creates a powerful tool for the

monitoring and management of disease, in this case dengue

fever. GIS provides a graphical analysis of epidemiological

indicators over time - provided by counting the number of

eggs in ovitraps, captures the spatial distribution and severity

of the disease, identifies trends and patterns and indicates

where there is a need to target extra resources. 

Ovitraps consist of black containers that are partially filled

with tap water holding vertical wooden paddles with one

rough side [9]. They are safe, economical and environment-

friendly. In regions of limited manpower for vector control,

the extensive use of ovitraps is an important resource to help

collect data on Aedes aegypti population on a wider area and

gauge the effectiveness of control efforts [10].

Currently, ovitraps are used as a means of detecting Aedes

aegypti presence as well as an approximate gauge of the

adult population in an area. It can be used to estimate fairly

well the population of adult mosquitoes in the environment

by counting the number of eggs laid on the moist paddle

[10].

This counting is usually performed in a manual, visual and

non-automatic form. To aid the control of dengue

proliferation and the eradication of its more dangerous form

to human beings, dengue haemorrhagic fever, this work

approaches the development of automatic methods to count

the number of eggs in ovitraps images using image

processing and analysis, particularly color systems

exploration k-Means clustering technique.

An ovitrap layer comprising a spatial map and an attribute

table was created in the GIS for monitoring and evaluating

the network of ovitraps placed citywide to better understand

vector trends and disease patterns. To every ovitrap placed is

given a unique identification number and its spatial location

is stored in the GIS. A table is written behind the ovitrap

which preserves the ovitrap’s criteria of identification (e.g.,

number, the date of the weekly collection, the address of the

site, the position of the ovitrap, the species found in the

ovitrap, the larval instars and pupal stages, etc.) and the

dominant species type breeding in that ovitrap for that week. 

In this scenario, this study aims to bridge a project for

developing a GIS to evaluate the ovitrap breeding data

collected weekly to identify hotspots and risk areas where

there is a danger of high Aedes aegypti infestation. The

analysis results will be used to support health decision-

makers in planning vector surveillance and control

operations.

In Recife, Brazil, most of the research projects involving

dengue infestation mapping by using Geographic

Information System, surveillance strategies and dengue

proliferation control are performed in conjunction with

Aggeu Magalhães Research Center (CPqAM). This research

is part of a project called SAPIO, granted by FINEP, that

aims the development of new technologies for dengue

control, surveillance and information dissemination [11].

III. MATERIALS AND METHODS

A. Acquisition of images

For digitization of the ovitraps, a digital camera was used

with the following parameters: 7.2 Megapixels resolution,

LCD 2.5’’, 4.5 times Optical Zoom and LEICA DC Vario

Elmarit lens. The ovitraps were digitized with about 700 dpi

resolution and 4 times optical zoom. This process generated

true color digital images of 3,072 versus 2,304 pixels. The

same image was split into 6 sub-images for the experiments.

The amount of eggs in each one of these sub-images is

acquired by visual inspection performed by technical

specialists.

B. K-means clustering

Initially, the images are acquired in RGB color system and

then they are converted into L*a*b* color system [12]. The

component L* indicates luminosity while the components a*

and b* indicate chromaticity information. Fig. 1 (top-left)

presents a RGB sample image and the components of its

conversion to L*a*b*: L* (top-right), a* (down-left) and b*

(down-right). The L*a*b* color system derives from the

XYZ color system. Its conversion is given as follows [12]:

( )

( ) ( )[ ]

( ) ( )[ ]nn

nn

nn

nn

ZZfYYfb

YYfXXfa

YYifYY

YYifYY
L

//200*

//500*

008856.0)/(,/3.903

008856.0)/(,16)/(116
*

3/1

−=

−=





≤

>−
=

        (1)

where Xn, Yn and Zn are white reference and f(t)=t1/3, if t >

0.008856, otherwise f(t) = 7.787t + 16/116.

Components a* and b* are used to cluster the input image

using k-means map [13]. For this experiment, the number of

clusters was set to three. Such clusters are associated to the

following classes: egg, trap and intermediate regions. The

proposed algorithm randomly selects the initial mean

vectors. The main target here is to minimize the sum of

Euclidean distances from each object to the cluster mean

vector (centroid) they are associated to, for each cluster in

the total set of clusters. This measure is called cohesion. As

stop criteria, there were used two measurements: a maximum

of iterations of 100; and the cohesion estimative. The

algorithm stops when the sum of distances for each object

cannot be decreased further. The algorithm repeats the

6715



clustering 3 times, each with a new set of initial cluster mean

vectors positions, and returns the solution with the lowest

value for the sums of point-to-mean vectors distances. The

results of k-Means clustering can be seen in Fig. 2.

     

     
Fig. 1. (top-left) RGB color image of an Ovitrap and the L*a*b*

components of the image after its conversion: (top-right) ‘L*’

luminosity, (bottom-left) chromaticity component ‘a*’ and (bottom-

right) chromaticity component ‘b*’.

 
Fig. 2. An ovitrap image clustered using k-Means clustering

technique.

C.Image labeling

After clustering the images, it is necessary to define which

cluster contains eggs. For this purpose, the original RGB

image is converted into a HSV (H = hue, S = saturation, V =

value) image. Hue is related with the tones that the image

contains. Thus, an analysis of the hue component can give us

information about the objects. The hue is evaluated as

follows [12]: 
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where R, G and B are the values of the red, green and blue

components for a given color, m is the minimum value

between R, G and B and M is the maximum value between

them. For each cluster, it was evaluated the average hue

value. It was found experimentally, based on the histograms

of each class, that when this value is higher than 0.5, the

respective cluster is set an area with eggs (then it turns to 1),

otherwise it is ignored (and it is turned to 0). A bi-level

image is the result of this analysis as Fig. 3-left illustrates.

A connected components algorithm is applied to the bi-

level image in order to label its connected regions [14]. This

algorithm puts a different label at each connected white area

of the image. With this labeling, it is possible to measure

each connected area. Small areas are deleted as it could not

contain an egg. By experimentations, it was defined that

every area with less than 140 white connected pixels should

be erased. This can be seen in Fig. 3-right where it is

presented the image of Fig. 3-left after the removal of its

white areas. This is done to decrease the noise in the image.

 
Fig. 3. (left) A bi-level image and (right) the same image after

elimination of small connected areas.

Finally, it was considered that an egg occupies an area of

357 pixels. Thus, the number of eggs is the total amount of

white pixels divided by this average area. In this case, the

method registered an amount of 118 eggs against the correct

value of 111 eggs that the image contains.

The proposed method robustness can be seen in Fig. 4

where small rocks present in the images are completely

distinguished from the eggs in clustering results avoiding

false-positives. It is an important result because by other

features (as form and size) a rock could be easily

misclassified as an egg by the algorithm.

       

        
Fig. 4. (left) Examples of images with rocks and (right) a

segmentation result. 

IV. DISCUSSION AND RESULTS

In Table I, it is presented the results of the method applied
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to six samples, including an image with no eggs. The image

labeled as ‘3’ in Table I is the image previously presented in

Fig. 1-top-right with 111 eggs.

The method described herein reached a maximum

individual error of 45.45% in the first image where there is a

difference of ten eggs. But in general, the average error was

about 1.16% and the standard deviation was about 4.15

which is acceptable in comparison with a non-automatic

method. The average error is more important than the

individual errors as the method will be applied in the

complete image in practical use.

TABLE I

RESULTS USING THE PROPOSED METHOD

Image Correct Amount of Eggs
Estimated Amount of Eggs

by the Proposed Algorithm 

1 22 32

2 8 9

3 111 118

4 30 20

5 19 20

6 0 0

total 255 258

The proposed method presents an improvement on the

average error from 6.66% to 1.16% when compared with

previous results achieved by Mello et al. [11]. On the other

hand, the maximum individual error increased from 25% to

45.45% and the standard deviation increased from 1.6 to

4.15. 

V. CONCLUSION

The Aedes aegypti mosquito is the main vector of dengue

illness, a major international public health concern in recent

decades. The mosquito lay his eggs in ovitraps and the

informations about the egg gauge could genarate important

statistcs to fight the illness applying strategies of vector

control.

Looking for a precise and robust method to replace the

current couting process performed in a manual, visual and

non-automatic way, the major objective of this work is to

propose an algorithm for segmenting and counting Aedes

aegypti eggs in ovitraps images automatically. 

The novel method uses L*a*b* and HSV color systems

exploration and k-Means clustering technique. An important

feature of the proposed method is that it had a better global

result than Mello et al. decreasing the average error.

Future works will concentrate on the application of

evolutionary computing to perform a clustering parameters

optimization by analyzing clustering quality indexes as the

quantization error, cohesion between points in the same

cluster and distances between clusters.
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