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Abstract— Spatial analysis of gene localization using fluores-
cent in-situ hybridization (FISH) labeling is potentially a new
method for early cancer detection. Current methodology relies
heavily upon accurate segmentation of cell nuclei and FISH
signals in tissue sections. While automatic FISH signal detection
is a relatively simpler task, accurate nuclei segmentation is still a
manual process which is fairly time consuming and subjective.
Hence to use the methodology as a clinical application, it is
necessary to automate all the steps involved in the process
of spatial FISH signal analysis using fast, robust and accu-
rate image processing techniques. In this work, we describe
an intelligent framework for analyzing the FISH signals by
coupling hybrid nuclei segmentation algorithm with pattern
recognition algorithms to automatically identify well segmented
nuclei. Automatic spatial statistical analysis of the FISH spots
was carried out on the output from the image processing and
pattern recognition unit. Results are encouraging and show that
the method could evolve into a full fledged clinical application
for cancer detection.

I. INTRODUCTION

Analysis of preferential gene localization is a promising
area in genome biology [1], [2] and is emerging as a
method for cancer detection [3]. Localization of the genes in
interphase nuclei has implications for their function, such as
transcriptional activity, and they can relocate depending on
physiological and pathological situations. Hence as a method
to detect cancer, attempts are being made to differentiate
between normal and cancerous tissue sections depending on
preferential gene localization. Target genes are fluorescent in-
situ hybridization (FISH) labeled and nuclei counterstained
in tissue sections. They are imaged using microscopy. Next
the nuclei in these tissue section images are segmented and
spatial statistical analysis of the FISH signal locations is
carried out. Manual processing of the tissue sections have
shown considerable promise in differentiating normal and
cancerous tissue sections [3]. However the high manual
processing time prohibits its use as a clinical application.
A fast, robust and accurate automatic procedure is essential
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for performing nuclear segmentation, FISH segmentation and
spatial statistical analysis.

Segmentation [4], [5], [6] of cell nuclei in tissue images is
the first step in the workflow and there is no universal method
that can be used. Developing a completely automatic method
for nuclei segmentation is a big challenge and requires the
use of a combination of advanced image processing and
pattern analysis methods to produce satisfactory results. The
task of segmenting nuclei for this application is uniquely
different to other tasks. On the one hand there is considerable
variation in size and morphological features of the nuclei
because of the inherent difference between normal and
cancerous tissues and truncation of the nuclei by the physical
sectioning of the tissue. We believe that these variations
significantly exceed variations due to differences in cell
stages. On the other hand many more nuclei are imaged
than are needed for analysis, enabling us to emphasize on
highly accurate segmentation of a subset of nuclei rather
than attempting to segment as many nuclei as possible.
The texture makes it difficult to distinguish between the
boundary intensity variations and inside texture variations
while variation in shape, size and other morphological cues
used by image analysis and pattern recognition algorithms
[7] to identify and segment good nuclei makes it difficult to
identify well segmented nuclei.

Above difficulties have led us to use a hybrid data driven
segmentation algorithm along with an intelligent supervised
pattern classification system to accurately segment a subset
of nuclei. Another unique feature of our approach is the use
of the intelligent pattern analysis system combining output
of multiple classifiers [8] to select the accurately segmented
nuclei. The classifier keeps learning the features of additional
manually segmented nuclei. The individual nuclei thus ob-
tained are then used for automatic FISH segmentation and
spatial statistical analysis.

II. SAMPLES AND IMAGES

For FISH labeling 4-5um thick formalin fixed, paraf-
fin embedded human normal and cancerous breast tissue
sections were used. The detailed information of the tissue
sections used and FISH labeling procedure is available in [3].
The sections were imaged using an Olympus IX70 micro-
scope controlled by a Deltavision System (Applied Precision)
with SoftWORX 3.5.1 (Applied Precision) and fitted with
a charge-coupled device camera (CoolSnap; Photometrics),
using a 60X, 1.4 oil objective lens and an auxiliary mag-
nification of 1.5. 3-D Z-stacks were acquired with a step
size of 0.2 or 0.5 um. The image pixel resolution was
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Fig. 1. System Block Diagram

1024 x 1024, with a pixel size of 0.074 um per pixel in
both X and Y direction. For nuclear segmentation maximum
intensity projections (MIP) of the original DAPI (blue)
channel were used, while the red and green FISH channels
were deconvolved using SoftWORX 3.5.1. Analyzed cells
were chosen randomly and were heterogenous with respect
to their differentiation state and cell cycle phase.

The nuclei were in slightly different focal planes in the
tissue. However since the tissue sections were 4-5 um thick,
the resolution and accuracy of the analysis was not affected
by the variation in focal depth. Also use of MIPs of the
image stacks alleviated the problem.

III. NUCLEI SEGMENTATION AND IDENTIFICATION

Fig. 1 shows the block diagram of the proposed image
analysis framework.

A. Wavelet Based Preprocessing

The preprocessing step involved use of wavelet based en-
hancement of the object boundaries using LastWave toolbox
[9]. The method involved storing the “edges” in the image
using a chain coded extrema representation and selectively
enhancing the edges in different spatial scales using an user-
defined factor. We used a bi-cubic spline wavelet to analyze
the edges upto 5 scales and the edges (extrema) in scales 2
to 4 were multiplied by a factor of 3. On reconstruction the
images showed well enhanced object boundaries as shown in
Fig. 2. Though this step accentuated the inside texture of the
nuclei, the advantage offered by the boundary enhancement
overshadowed this shortcoming of the procedure.

B. Thresholding and Hybrid Segmentation Algorithm

The contrast enhanced images were binarized using a com-
bination of the isodata and triangle thresholding algorithms
available in DIPImage [10]. Morphological operations of
binary closing and opening along with a size based screening
removed small objects resulting from noisy background and
texture within the nuclei.

Labeling the foreground objects in the processed thresh-
olded image provided a good indication of the regions
containing the nuclei in the image. However, the boundaries
of the nuclei in the thresholded image were inaccurate and
were not satisfactorily close to the actual object boundaries.
To further improve the boundary accuracy a level set [11]
based algorithm was used in which each individual boundary

Fig. 2.
output

(a) Original blue DAPI channel (b) Wavelet based preprocessing

from the thresholding operation evolved tightly around the
visually perceived object boundaries. This method was a
variational formulation for geometric active contours that
forced the level set to be close to a signed distance function.
The formulation consisted of an internal energy term that
penalized the deviation of the level set function from a signed
distance function and an external energy term in the form of
the image gradient magnitude that drove the motion of the
zero level set towards desired image features. Considering ¢
as a signed distance function plus a constant

P(O) = [ 51801 =1)2dsdy M

is a metric to measure how close ¢ is to a signed distance
function in © C $2. The variational formulation is

E(¢) = uP(9) + Em(d), 2)

where © > 0 controls the effect of penalizing the deviation
of ¢ from a signed distance transform. &,,(¢) is the energy
term that drives the motion of the zero level curve of ¢. The
evolution equation

dp  0OE 3

ot 99’ ©)
is the gradient flow that minimizes the overall energy func-
tional &.

Until this point no effort was made to separate clustered
nuclei and the level set evolved object boundaries surround
clusters of nuclei in a number of cases. The next step at-
tempted to break up the nuclei clusters into individual nuclei
using the watershed algorithm [10]. As a post processing step
the fragments of the watershed output were merged using
a preset size value of nuclei. To improve the segmentation
and detection accuracy of the algorithm the size parameter
should dynamically adjust to the nuclei size. Fig. 3 shows
the intermediate results for the segmentation procedure.

At this point, although we used the level set and watershed
algorithm for performing the segmentation, they can be
replaced by any other segmentation algorithm. For instance,
we have also experimented using graph based segmentation
[12] methods which give better segmentation results under
certain circumstances (data not shown).

C. Pattern Recognition Engine

The pattern recognition engine selected the subset of
accurately segmented nuclei. Fig. 4 shows the framework.
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Fig. 3. (a) Original DAPI channel after preprocessing (b) Thresholded
image (c) Labeled image after morphological operations showing the input
seeds for the level set segmentation algorithm with a single seed highlighted
in red box A (d) Initial contour for level set algorithm for A (e) Level set
evolved contour overlayed on the DAPI channel for A (f) Binary version
of the evolved level set contour for A (g) Output image after applying
watershed segmentation algorithm on the level set output region for A (h)
Labeled version of the watershed output for A (i) Final segmentation on the
entire image using the hybrid segmentation algorithm
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Fig. 4.  Pattern recognition module showing the stacked classifier for
identifying nuclei that can be used for the FISH analysis

We used a supervised classifier and the training was done
on a subset of 5 segmented images from each of the 9 tissue
section datasets. This was about 25% of the entire dataset.
The training set was carefully selected so that the classifier
encountered all feature variations in the dataset. The training
set was further partitioned such that 80% was to be used as
training set and the remaining 20% as validation set. The
segmented objects in the training and validation set were
manually classified into 3 classes: ’Good Nuclei’ (nuclei seg-
mented almost perfectly), ’Medium Nuclei’ (nuclei having
small boundary inaccuracies) and the ’Remainder’ (objects
never used for subsequent analysis).

For any pattern recognition engine to work well, the
feature space used for representing the object features has a
vital role to play. In this case shape (perimeter to area ratio,
Feret diameters), texture (mean intensity, intensity standard
deviation), size (size, perimeter) and other morphological
cues were used as the feature set to identify a well segmented
nuclei. The dimensionality of the feature space was 24.

Fig. 4 shows the stacked classifier combining: (i)linear
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Fig. 5. FISH segmentation and analysis module

discriminant classifier on a principal component analysis
reduced space capturing 95% of the variance(klm-ldc);
(ii)linear discriminant classifier on the best 3 features se-
lected by 1 nearest neighbor leave-one-out error(NN-FFS-
Idc); (iii)linear discriminant classifier on the best 3 fea-
tures selected by linear discriminant classifier leave-one-out
error(LDC-FFS-lIdc); (iv)linear discriminant classifier(Ldc);
and (v)1-Nearest neighbor classifier(1-NN). The stacked
classifier was used to harness the feature extraction power
of all the classifiers which often show a complementary
discriminating behavior. The classifier was trained on the
manually classified training set and then validated on the val-
idation set to identify the combiner to be used for the stacked
classifier. Product, mean, median, maximum, minimum and
voting combiners [8] were tested. Mean combiner performed
the best among the 6 providing 93% correct classification on
the validation set.

Our simulations with the training and validation set
showed that the stacked classifier performed better than the
individual classifiers. One major aim of this work was to
design the pattern recognition engine so that it can identify
the well segmented nuclei with a high degree of accuracy and
confidence, since the immense variation in nuclear features
makes it practically impossible to accurately segment every
nucleus in an image.

IV. SPATIAL ANALYSIS OF FISH SIGNALS

Spatial analysis of FISH signals is shown in Fig. 5.
Details of the procedure can be found in [13]. FISH signals
were segmented using a multiscale Gaussian filtering and
enhancement scheme. Radial position of the spots were then
calculated using a shape independent Euclidean distance
transform (EDT) based metric. Once the spots were located
and their radial position identified, 4 parameters were used to
quantify the spatial position of the gene spots. They were G-
Edt, R-Edt (Green and Red spot EDT metric), G-EdtP and
R-EdtP (probabilistic measure for the green and red spots
to be near the nuclear periphery). 1-D Kolmogorov-Smirnov
Test (K-S Test) was used to compare the spatial distribution
of the genes to uniform random distribution of points in the
nuclei. Spatial randomness or non-randomness of the gene
spots was used to predict whether the spatial localization of
that gene can be used for cancer detection.

V. EXPERIMENTS AND RESULTS

Experiments for evaluating the performance of the auto-
matic method were done in three stages resulting in 3 sets of
outputs which differ in their degree of automation. The sets
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TABLE I
TABLE SHOWING THE PROBABILITY THAT THE SPATIAL FISH SIGNALS FOR NMFM AND NAFA ARE SIMILAR USING 1-D K-S TEST

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9

G-Edt 0.43 0.56 || 0.81 0.87 0.88 0.16 || 0.98 || 0.05 0.67

G-EdtP || 0.42 || 0.65 0.79 || 0.70 || 0.79 || 0.42 || 0.31 0.06 || 0.61

R-Edt 094 || 0.48 0.33 0.17 0.57 0.29 || 0.96 || 0.18 0.96

R-EdtP 0.98 0.66 || 0.29 || 0.16 || 0.47 0.11 0.76 || 0.80 || 0.74
TABLE I

TABLE SHOWING THE PROBABILITY THAT THE SPATIAL FISH SIGNALS FOR NMFM AND NMFA ARE SIMILAR USING 1-D K-S TEST

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9
G-Edt 0.79 || 0.99 1.00 1.00 1.00 || 0.98 || 0.72 || 0.98 || 0.58
G-EdtP || 0.64 || 0.72 || 0.99 || 0.99 || 0.88 || 0.83 || 0.20 || 0.80 || 0.63
R-Edt 0.51 043 || 0.27 1.00 1.00 1.00 || 0.99 || 0.82 1.00
R-EdtP || 0.50 || 0.41 0.21 1.00 || 0.98 || 0.99 || 0.99 || 0.65 1.00

were the following : NMFM (Nuclei selection manual, FISH
screening manual), NMFA (Nuclei selection manual, FISH
screening automatic) and NAFA (Nuclei selection automatic,
FISH screening automatic), where nuclei selection was done
on the output of the automatic nuclei segmentation module
and FISH screening was done from the automatic FISH
segmentation module output.

The degree of spatial similarity of the spots among the 3
output sets was used as the metric to evaluate the efficacy
of the automation process. Table I shows the probability
that the FISH distribution between NMFM and NAFA are
similar. In the majority of cases the probability that the two
methods calculated gave similar results was more than 50%
and in only one instance was there a significant difference
of 5% (D8 for green) level. This justifies the use of the
hybrid segmentation and nuclei selection procedure for high
throughput tissue screening.

As an intermediate step the automation efficacy of the
FISH segmentation procedure was tested. Table II shows the
probability of similarity of the FISH distribution between
NMFM and NMFA. Most of the signal distributions were
statistically very similar enabling us to use the existing
automatic FISH segmentation procedure.

VI. CONCLUSIONS AND FUTURE WORK

Progress towards building a framework for automatic
nuclei segmentation and spatial gene analysis in interphase
nuclei for cancer detection is reported. Manual analysis of
similar datasets had shown that the method is promising for
cancer detection.

Spatial analysis of genes also has potential to be used for
cancer staging. It is most likely that analysis of multiple
genes might be required for the purpose. Other morpholog-
ical features, such as nuclear size, are a potential cue for
cancer staging too. However the data used for the paper was
not used for this purpose.

For the system to work as a diagnostic tool automation
is essential so that the analysis can be done in a timely and
cost effective way. The results show that the proposed hybrid

automatic segmentation method has considerable promise
for automating the analysis. However improvement is still
needed. Some of the future work involves: incorporating
dynamic learning systems so that the pattern analysis system
becomes increasingly more expert, improving the segmenta-
tion module for more accurate boundary detection, identi-
fying more feature sets for improved identification of good
nuclei and exploring advanced pattern classification methods
with neural networks and support vector machines.

REFERENCES

[1] T. Takizawa, K. J. Meaburn and T. Misteli, The Meaning of Gene
Positioning,Cell, 2008, Vol. 135, Issue 1, pp 9-13

[2] K. J. Meaburn and T. Misteli, Cell biology: Chromosome territories,
Nature, 2007, 445, pp 379-381

[3] K. J. Meaburn, P. R. Gudla, S. Khan, S. J. Lockett and T. Misteli,
Cancer Detection Based on Spatial Genome Organization, submitted
to Journal of Cell Biology

[4] P. R. Gudla, K. Nandy, J. Collins, K. J. Meaburn, T. Misteli and S.
J. Lockett, A High-Throughput System for Segmenting Nuclei Using
Multiscale Techniques, Cyfometry Part A, 2008, Vol. 73A, Issue 5, pp
451-466

[5] D. McCullough, P. Gudla, B. Harris, J. Collins, K. Meaburn, M.
Nakaya, T. Yamaguchi, T. Misteli, S. J. Lockett, Segmentation of
Whole Cells and Cell Nuclei From 3-D Optical Microscope Images
Using Dynamic Programming, IEEE Transactions on Medical Imag-
ing, 2008, Vol. 27, pp 723734

[6] V. Laurain, H. Ramoser, C. Nowak, G.E. Steiner and R. Ecker, “Fast
Automatic Segmentation of Nuclei in Microscopy Images of Tissue
Sections”, Proceedings of the 2005 IEEE Engineering in Medicine and
Biology Conference, Shanghai, China, 2005, pp 3367-3370

[71 R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Second
Edition, 2000, Wiley-Interscience, New York, N. Y.

[8] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, On Combining
Classifiers, IEEE Transactions On Pattern Analysis and Machine
Intelligence, 1998, Vol. 20, No. 3, pp 226-239

[9] LastWave, http://www.cmap.polytechnique.fr/"bacry/LastWave

[10] Diplmage, http://www.diplib.org/
[11] C. Li, C. Xu, C. Gui and M. D. Fox, Level Set Evolution Without

Re-initialization: A New Variational Formulation, Proceedings of the

2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2005, San Diego, C. A., pp 430-436

P. F. Felzenszwalb and D. P. Huttenlocher, Efficient Graph-Based

Image Segmentation, International Journal of Computer Vision, 2004,

Vol. 59, Issue 2, pp 167-181

P. R. Gudla, K. Nandy, M. Philip, K. J. Meaburn, T. Misteli and S.

J. Lockett, FLO:An Unbiased Spatial Analysis Of FISH Signals In

Irregular Shaped Nuclei, manuscript under preperation

[12]

[13]

6721



	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

