
  

  

Abstract—Nerve cell segmentation is important for better 
understanding of the connections between broken nerves. In this 
paper, we propose a registration-based segmentation to improve 
the segmentation from a series of microscopic image sequence. 
A global iterative closest point (ICP) registration is first 
employed to find the corresponding cells between neighboring 
frames. Then a local ICP registration is adopted to refine shape 
matching between corresponding cells. When registering the 
current frame to the previous frame, a missing cell in the 
current frame can obtain a dummy region with respect to the 
previous frame. The dummy region is then confirmed as a cell 
by checking the correspondence of the cell among the previous, 
current and next frames. Experimental results show that the 
proposed registration based algorithm recovers the cells that 
are missed in conventional segmentation. 

I. INTRODUCTION 
ERVE cell segmentation is an important part of nerve 
reconstruction because it affects the accuracy of 

connection between two broken nerves. Many papers have 
discussed issues related to cell segmentation in recent years. 
Ko et al. [1] presented a cell nuclei segmentation method 
based on an adaptive attention window method which 
facilitates background removal and reduces processing time 
of segmentation. Kalviainen et al. [2] used the Laplacian of 
Gaussian filter with multiple scales as a blob detector, after 
which dynamic programming was used to segment cell 
contours. Yang et al. [3] presented an approach to the 
quantitative analysis of live cell images. Their method 
covered cell trajectories, cell cluster separation, mitotic cell 
detection and cell tracking.  A modified watershed algorithm 
was developed by Tek et al. [4] to find initial cell positions, 
whereupon the circle Radon transform extracted cell centers. 
Jiang et al. [5] presented a white blood cell segmentation 
method based on scale-space filtering and watershed 
clustering. A two-step approach of cell segmentation for 
microscope images was proposed by Colantonio et al. [6]. 
They performed fuzzy clustering of color image in HSV color 
space, then exploited an artificial neural network to refine the 
nucleus contours. Although these prior segmentation 
methods mostly achieve good performance, the problem of 
non-uniform staining remains unsolved. In our previous work 
[7] achieved accuracy above 96%, but persistently lost a 
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residual percentage of cells. We find that some cells got 
undetected because the method in [7] only considers a single 
frame. If the shape of a cell is too thin or long, or if the 
intensity of the cell is not uniform, then the cell detection may 
be misinterpreted as a false alarm. Fig. 1 shows examples of 
misdetection cells in our previous study. This proposed study 
reduces the number of missing cells by considering more than 
one frame, i.e. comparing inter-frame segmentation results by 
using registration-based methodology. 

Registration assistance has been explored in various 
reported methods. Vladimir et al. [8] performed automatic 
registration based on mutual information for initial placement 
of the deformable models. Gerard et al. [9] performed 
landmark-based registration of left ventricle for the initial 
placement of deformable models. Frangi et al. [10] proposed 
a registration-based framework for propagation of 
corresponding landmarks from a 3-D atlas to 3-D shapes. 
Yezzi et al. [11] used parallel execution of both segmentation 
and registration, and demonstrated complementarities 
between segmentation and registration. We also take 
advantage of the registration-based segmentation to help the 
detection of missing cells. 

The flowchart of registration-based segmentation is 
illustrated in Fig. 2 and presented as follows: 
 
Initial:  
Segment cell images and obtain the information of center and 
contour of each cell by previously proposed method [7].  
Let t denote discrete time and set to 1. 
Step 1: Let l and l+1 denote discrete time and set to t and t+1, 

respectively. Centers of cells in l and l+1 are put 
into S and M point sets, respectively. 

Step 2: Register centers of cells in frame l to those in frame 
l+1 based on global ICP, and obtain paired cells.  

Step 3: Refine shape matching of each paired cells between 
frame l and l+1 based on local ICP and construct 
their relationship. 

Step 4: If l= t, the registered centers of cells in frame l are put 
into S, and centers of cells in frame t+2 are put to M, 
then l = l + 1 and go to step 2, else go to step 6. 

Step 5: Check correspondence among cells on frames t, t +1 
and t +2.  

Step 6: Let t = t + 1, and go to step 1 until t is equal to the 
total number of frames – 2.  
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II. CELL SEGMENTATION 
We briefly review the nerve cell segmentation process that 

generates cell contours as the initial input to the proposed 
registration-based algorithm in this paper. Details of the 
segmentation method can be found in [7]. A multi-scale 
watershed algorithm is employed as the first step of cell 
segmentation. Based on the algorithm, we can detect cell 
nuclei in different scales. After watershed segmentation, we 
can obtain watershed regions and take them as the estimated 
positions of cell nuclei. Because these regions may be the 
interstices between cells, they need to be double-checked 
with all basic cell properties.  In this cell nuclei identification 
process, we used some properties of cell to eliminate the 
falsely-detected cells. After cell nuclei were appropriately 
identified, we apply an active contour model based on fuzzy 
rules to refine the outer boundaries. The energy functions 
determined by using fuzzy rules provide more flexibility for 
cell contour deformation in the proposed active contour 
model. 
 

III. CELL REGISTRATION 

Based on prior knowledge of the center point of each cell 
and contour information from the previous study, the 
registration-based segmentation is adopted to improve the 
segmentation results. Its three steps are global ICP, local ICP 
and handling missing cells, and are described in the following 
sections. 
 

A. Global ICP 
A general statement of ICP is described as follows. Given 

two point sets, a source data 1{ } == sN
i iS s  and a target 

data 1{ } == mN
i iM m , then it is possible to find a transformation T 

that can register s to best align with M. The adopted 
formulation to find T is based on the least squares criterion as 
follows: 
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Let T of (1) denoted a rigid transformation. Eq. (1) is 
represented as follows:  
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where R is a rotation matrix and t  is a translation vector. 
An efficient method to handle rigid registration in (2) was 
suggested by Besl and Mckay [12]. They used two basic steps 
to register source data to the target data; the first step is to find 
the correspondence and the second is to calculate the rotation 
and translation. To find the correspondence 1{( , ( ))} sN

k jj  C j =  

between data sets S and M based on the ( 1)thk − rigid 
transformation 1 1( , )− −k kR t . 
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To calculate the thk rotation and translation ( , )k kR t based 
on the current correspondence 1{( , ( ))} sN

k jj  C j =
, we can use 

the following equation: 
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In this procedure we use the centers of cells in two adjacent 
frames, e.g. the red points in Fig. 1, to execute global 
registration. The centers of the cells in frame t and t+1 are 
stored in the database S and M, respectively. After the global 
ICP, the matched centers of the cells in frame t and t+1 are 
called a paired cell. If the distance of centers between paired 
cells is less than 10 pixels, local ICP is performed to refine the 
shape contour of the paired cell. If the distance is larger than 
10 pixels, the two cell centers are stored in the S and M 
dataset. Global ICP is again executed. The procedure is 
repeated until no further increase in the number of paired cells 
between frame t and frame t+1. Fig. 3 (a) and (b) show frame 
t and frame t+1 and the white contours of cells are the 
segmentation results obtained by our previously reported 
method [7]. Fig. 3(c) shows the pink contours which are the 
cells in frame t registered to those in frame t+1 after global 
ICP. 
 

B. Local ICP 
It can be seen that the pink contours sometimes do not 

match the cell boundary in frame t+1. If the displacement 
between the centers of paired cells in consecutive frames is 
less than ten pixels, we execute local ICP for the paired cells 
for better shape matching. The global and local ICPs are 
necessary steps which register the centers of cells in frame t to 
frame t+1, and then from frame t+1 to frame t+2. The global 
ICP use the centers of all cells to register the two adjacent 
frames. And the local ICP selects twenty points from the two 
contours of the paired cells with equal angular separation for 
registration. An example can be seen in Fig. 3(d), the pink 
and white colors show sample points around cell contours. 
After local ICP, the resulting contours in green color show 
better matching in Fig. 3 (e). 
 

C. Handling Missing Cells 
After global and local ICP, we obtain the registration 

parameters between neighboring frames. Missing cells can be 
recovered during the course of registration based 
segmentation. Fig.4 shows three sequential frames of two 
parallel nerve cells, cell #1 and #2. Cell #2 is detected in 
frames 1 and 3 but is missed in the frame 2. By properly 
employing the relationship of neighboring frames, the 
inter-frame information can be used for detecting this type of 
missing cell like cell #2. The strategy of handling missing 
cells includes creating a dummy cell and validating the 
dummy cell. In the dummy cell creation procedure, if a cell in 
frame t can’t find a corresponding cell in frame t+1 then 
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create a dummy cell in frame t+1 based on the registration 
parameters of the global ICP from frame t to frame t+1. The 
dummy cells in frame t+1 will participate in the global ICP 
process which registering cells from frame t+1 to frame t+2. 
Thus, based on the registration parameters from frame 1 to 
frame 2, we create a dummy cell #2 in frame 2.  
After finishing the registration from frame t to t+1 and frame 
t+1 to t+2, the relationship of a cell among these frames is 
built. In confirming the existence of the dummy cell 
procedure, the cell in frame t+2 registers backward to frame 
t+1 and then t. If it also finds the same corresponding cell in 
the previous forward registration from frames t to t+1 and t+2, 
the existence of this cell is validated.  Cell #2 in frame 2 is 
thus confirmed if cell #2 was found in both the forward and 
backward registration processes and is discarded otherwise. 
 

IV. EXPERIMENTS 
The goal of the proposed system is to segment the 

un-segmented cells via registration-based segmentation. To 
verify the accuracy of the proposed method, we apply our 
algorithm to a micrographic sequence which consists of 8 
frames. We measured recovery rate to evaluate the cell 
registration–based segmentation algorithm. The recovery rate 
is the ratio of the number of recovered cells to the number of 
missing cells. In addition, cells less than ten pixels and cells 
that are too vague to be identified by experts were ignored in 
the performance evaluation. The recovery rates of 6 
intermediate frames (excluding the first and last of the 8 
frames) are 81%, 67%, 75%, 58%, 67% and 81%, 
respectively. Fig. 5 shows frame 7 of the segmented images 
by the proposed method whose recovery rate is 81%. 
 

V. RESULTS AND DISCUSSION 
This paper presents an automatic segmentation method to 

improve the nerve cells segmentation results of our prior 
study by using the registration based technique. It addresses a 
class of thin and long cells, e.g. nerve cells, which are usually 
falsely or miss detected due to the poor image quality. The 
proposed method begins with ICP registration, and then 
detects the missing cells based on the continuity among 
neighboring frames. Experimental results show that the 
proposed method significantly improves the accuracy of our 
cell segmentation results. The proposed segmentation method 
can also be applied to the other segmentation problems with 
large number of contiguous objects in a sequence of images. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. A frame shows the center (red) and contour (white) 
information of the cells. 
 

 
Fig. 2. Flowchart of registration-base segmentation. 
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Fig. 3. (a-b) frames t and t+1; (c) registration result after 
global ICP; (d) selected sample points for local ICP; (e) 
registration result after local ICP. 
 
 

                                
(a) frame 1            (b) frame 2           (c) frame 3 

 
Fig. 4. The problem: missing cell #2 in a series of three 
micrographic frames. 

 
Fig. 5. Experimental result. (a) original image (b) the 
segmentation result in the earlier study (c) cells marked in 
purple are obtained by the proposed registration-based 
segmentation (d) final segmentation result. 
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