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Abstract—Machine learning based classification
protocols for automated function annotation of pro-
tein structures have in many instances proven supe-
rior to simpler sequence based procedures. Here we
present an automated method for extracting features
from protein structures by construction of surface
patches to be used in such protocols. The utility of
the developed patch-growing procedure is exemplified
by its ability to identify reversible membrane binding
domains from the C1, C2, and PH families.

I. INTRODUCTION
Complex signaling networks involving both

protein-protein and protein-lipid interactions allow
for the rapid synchronization between cell activity
and external environment. One vehicle for such pro-
cesses is the reversible translocation of cytoplasmic
proteins to cellular membranes [1]: By increasing
the effective concentration of two interaction part-
ners in a confined space close to the membrane a
signal exchange becomes much more likely. Mem-
bers of a number of domains families (such as
C1, C2, PH, FYVE, ENTH and PX domains) have
been found to drive the association with membranes
by means of a collection of common mechanisms.
In particular, properties such as the nonspecific
electrostatic attraction between anionic membranes
and cationic surface residues [2], association of
hydrophobic surface residues with the membrane
hydrocarbon core [3], and the specific interaction
between key residues and lipid head-groups through
hydrogen-bonding [4] have been found to be of
major importance (albeit not all mechanisms are
equally prominent in every families).
To identify and predict which protein domains

can bind to membrane is of great importance for
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understanding cell signaling networks. Simple pro-
cedures based on sequence similarity for function
annotation do, however, not give the desired accu-
racy in uncovering such mechanisms. Therefore we
aim at developing more advanced machine learning
based approaches for this task. In past decades a
vast collection of well-performing machine learning
algorithms have been developed [5], [6]. The con-
cern when constructing a classification procedure is
thus how to encode the information from the func-
tion of each annotated domain in the trainingset into
a numerical vector capturing its essential properties.
In this work we present an approach for au-

tomating the feature calculation task for protein
domains with known structure. The characteristic
properties of the structure is captured by identi-
fying continuous regions of the solvent exposed
surface, so-called surface patches, defined by phys-
ical or chemical quantities (electrostatic potential,
hydrophobicity etc.) common to the this specific
area. We illustrate the method by calculating fea-
tures believed to be of importance in identifying
protein domains involved in reversible binding to
plasmamembranes, it should, however, be noted
that the technique as such is more general and can
easily be tailored to address any type of structure-
based classification scenario. This in contrast to
previous works developing patch-centered surface
representations where either local structure similar-
ity was used [7] to screen a library of functional
sites, or unsupervised clustering-based tecniques
were applied [8], [9].

II. AUTOMATED FEATURE EXTRACTION
THROUGH PATCH GROWING

The steps of patch growing detailed below are
outlined in Fig. (1). The basic idea is as follows:
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(a) The solvent-excluded surface as cal-
culated by the MSMS (Maximal Speed
Molecular Surface) algorithm, the color-
ing of the triangles representing the sur-
face represent the number of probe con-
tact made (see [10] for details).

(b) Mapping of the electrostatic potential
onto the surface, dark-red regions indicate
higly negative potential values while dark-
blue regions indicate highly positive po-
tential values.

(c) The patches grown on the surface with
parameter C = 60, red regions indicate
patches with negative potential value, pur-
ple regions indicate patches with positive
surface value, and pink regions indicate
location with mixed potential values.

Fig. 1. The three steps in determining surface patches for a certain quantity for protein structure PDB-id 1a53, here illustrated
with the electrostatic potential of the structure.

First, the surface is defined as a collection of
neighboring triangles (Fig. 1(a)), second, a numer-
ical representation of the quantity of interest is
associated with each triangle Fig. 1(b), and finally
the patches that are most highly correlated with the
function of the structure are defined (Fig. 1(c)).

A. Surface patch definition

By using the definition of solvent-excluded sur-
face (SES) in [10] the topological boundary defined
by the Van der Waals radius of the atoms in the
structure of interest is determined by use of the
MSMS algorithm developed by Sanner [10]. The
final SES is expressed by a triangulation procedure
and thus results in a collection of neighboring
triangles representing the molecular surface.
For now lets assume that each triangle on the

surface is associated with a numerical value corre-
sponding to the quantity that forms the basis for
patch growing. We will denote this value for a
triangle t by t.val and the distance between the
centroids of triangles t1 and t2 by dist(t1, t2).
Furthermore, t.neigh will denote the neighbor tri-
angles of t, meaning those that share an edge with
t, and t.included will be a boolean flag indicating
whether a given triangle has been included in a
patch. The collection of patches is then found by
repeating the following recursive procedure until
all surface triangle have been included in a patch:

Choose a random triangle that has not yet been
included in a patch and extend the patch from here
according to the procedure outlined in Fig. 2, repeat
until all triangles have been included in a patch.

GROW-PATCH(Seed triangle T):
for t1 in T.neigh:
if NOT t1.included AND
|t1.val - T.val|/dist(T,t1)<C:

Add t1 to the current patch
t1.included = TRUE
GROW-PATCH(t1)

Fig. 2. Pseudocode for the patch growing procedure. C is a
constant determining whether the patch should be extended to a
given neighbor triangle.

The constant C in the GROW-PATCH-method
(Fig. 2) is used to determine if a patch should
be extended in a given direction. An appropriate
value for C needs to be set for each patch type
of interest. A C-value can of course be determined
manually by simple visual inspection of the patches
in the molecular surface, however, a fully automate
procedure is desirable. Since our aim is to use
the patch-growing in context of machine-learning,
determining the C-value can be made part of the
learning procedure. As we will have a annotated
trainingset available the final C-value is determined
by its ability to grow patches that separate the two
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groups in the trainingset, as measured by the Fisher-
score [11].

B. Mapping quantities onto the surface
In order to do the patch-growing we need to

assign values from the quantity of interest to each
triangle on the SES. Here we give examples of how
this can be done for both spatial and residue/atom
based data.
(1) The electrostatic potential of a structure can

be calculated by solving the Poisson-Boltzmann
(PB) equation numerically using a finite difference
scheme as implemented in APBS [12]. The spatial
potential values are mapped onto the surface by
taking a weighted average of the 8 discrete data
points closest to the point 1 A from the triangle
surface in the direction of its normal vector. (2)
Hydrophobicity values are assigned to the surface
based on the Kyte-Doolittle value of the amino
acid that gave rise to the triangle of interest [13].
(3) Hydrogen-bonding is mapped to the surface by
determining if an atom is capable of forming a
hydrogen bond, indicated by setting t.val = 1.

III. EXPERIMENTS WITH C1, C2, AND PH
DOMAINS

For testing the value of the patch growing proce-
dure in identifying structures of a particular func-
tion, a collection of domains from families known
to be involved in reversible membrane targeting was
collected. These were annotated as either binding
membrane or as having other function (for instance
participating in protein-protein interaction)

A. Datasets
The dataset was constructed from our online

resource for Membrane Targeting Domains (MeTa-
Dor) [14]. A subset of domains that do not share
more than 75% sequence similarity and with known
binding properties were extracted. For the domains
in the set not having experimental structures avail-
able homology models were created (domains for
which no template with at least 40% sequence
similarity existed were discarded). The resulting
datasets have binding/non-binding counts of 33/22,
63/27, and 70/88 for C1, C2, and PH domains,
respectively.

B. Separation by electrostatic potential, hydropho-
bicity, and hydrogen-bonding capability
The above framework was used to grow patches

based on the three quantities outlined in Section
II-B. As can be seen in Fig. 3 the features de-
rived from these patches do in general show good
discriminatory power between the two classes of
domains, although some features prove more in-
strumental in specific families. First, we compare
the cumulative area of the five largest patches
with positive potential value grown based on the
electrostatic calculations. It is evident from Fig.
3(a) that membrane binding domains do in general
have a larger positive surface area than non-binding,
regardless of family. This observation correlates
well with accepted models proposed for membrane-
targeting domains, which suggest that initial non-
specific translocation to membranes is usually due
to attraction between positively charged protein
domains and negatively charged lipid-head groups
[4].
The next feature we inspect is the size of the

largest hydrophobic surface patch. As can be seen
in Fig. 3(b) this features seems to discriminate
well amongst binding and non-binding C1 domains,
but has near identical distribution for C2 and PH
domains. Again there is good correlation with
known properties of the binding mechanisms for
these domains. Many C1 domains strengthen the
binding to membranes by insertion of a collection
of hydrophobic residues clustered on one side of
the structure, into the hydrocarbon core of the
membrane [15], whereas C2 and PH domains most
often do not penetrate deeply into the membrane.
Finally, we compare the hydrogen-bonding ca-

pability of the binding and non-binding domains
by calculating the percentage of the SES covered
by hydrogen-bonding patches. Fig. 3(c) shows that
this feature mainly has discriminatory power be-
tween binding and non-binding cases in the PH
domain family, while there is little difference in the
cases from C1 and C2 domain families. Though
all three domains families form hydrogen-bonds
with lipids upon binding membrane, the effect is
most prominent in PH domains which can have
as many as three PIP3 binding-sites, all forming
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(a) Cumulative area of the five largest sur-
face patches with positive potential value
compared among the 3 families.

(b) The area of the largest hydrophobic
patch compared among the 3 families.

(c) The percentage of surface area cov-
ered by hydrogen-bonding patches com-
pared among the 3 families.

Fig. 3. The comparison of 3 features obtained from patches grown with 3 different quantities mapped onto the solvent-excluded
surface. For each feature the distribution among Binding (B) and Non-binding (N) domains for C1, PH, and C2 domains are
compared.

several hydrogen-bonds [16].

IV. CONCLUSION

We have constructed a framework for feature
generation from protein structures to be utilized
in machine learning application of protein function
annotation. As illustrated with the reversible mem-
brane targeting domain datasets, features derived
in this fashion show good discriminatory power
in separating binding and non-binding domains
making construction of strong machine learning
classifiers plausible. Furthermore, the framework
can easily be extended to handle other structure
based classification tasks.
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