
  

  

Abstract—A Bayesian multilevel functional mixed-effects 

model with group specific random-effects is presented for 

analysis of liquid chromatography-mass spectrometry (LC-MS) 

data. The proposed framework allows alignment of LC-MS 

spectra with respect to both retention time (RT) and mass-to-

charge ratio (m/z). Affine transformations are incorporated 

within the model to account for any variability along the RT 

and m/z dimensions. Simultaneous posterior inference of all 

unknown parameters is accomplished via Markov chain Monte 

Carlo method using the Gibbs sampling algorithm. The 

proposed approach is computationally tractable and allows 

incorporating prior knowledge in the inference process. We 

demonstrate the applicability of our approach for alignment of 

LC-MS spectra based on total ion count profiles derived from 

two LC-MS datasets. 

I. INTRODUCTION 

N proteomic studies, liquid chromatography coupled with 

mass spectrometry (LC-MS) is a common platform to 

identify and determine the abundance of various peptides 

that characterize particular proteins in biological samples 

[1]. Each LC-MS run generates data comprised of thousands 

of peak intensities for peptides with specific retention time 

(RT) and mass-to-charge ratio (m/z) values. In differential 

protein expression studies, multiple LC-MS runs are 

compared to identify differentially abundant peptides 

between distinct biological groups. This is a challenging task 

because of the following reasons: (1) substantial variation in 

RT across multiple runs due to the LC instrument conditions 

and the variable complexity of peptide mixtures, (2) 

variation in m/z values of the peptides due to occasional drift 

in the calibration of the mass spectrometry instrument, and 

(3) variation in peak intensities due to spray conditions. 

Thus, efficient and robust alignment algorithms are needed 

for qualitative comparison of multiple LC-MS runs.  
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Various alignment methods have been described in 

literature including dynamic time warping (DTW) [2], 

correlation optimized warping (COW) [2], vectorized peaks 

[3], statistical alignment [4], and clustering [5]. Most of 

these algorithms are either limited to a consensus pair-wise 

combination of spectra for alignment or may use reference 

(template) spectra to find matching among datasets. These 

limitations may lead to sub-optimal results compared to 

global alignment techniques. Methods that rely on 

optimization of global fitting functions provide an alternative 

solution to alignment of multiple LC-MS spectra 

representing distinct biological groups. For example, a 

recently introduced method called continuous profile model 

(CPM) has been applied for alignment of continuous time-

series data and for detection of differences in multiple LC-

MS data [6]. Although CPM is described as a naïve and 

computationally intensive method, the method has some 

limitations, such as the susceptibility to fall into local 

minimum solutions due to the sub-optimal problem 

formulation. Also, the method creates superfluous signal 

gaps, leading to nonuniform trace points across multiple LC-

MS spectra. Another notable limitation of CPM algorithm is 

its poor performance with time complexity scales, requiring 

substantial computation time in modeling high resolution 

data. Thus, CPM is more suitable for low resolution of LC-

MS data generated from less complex fractionations. 

Recently, Morris et al. developed a Bayesian-based method 

for analysis of matrix-assisted laser desorption ionization-

time of flight (MALDI-TOF) proteomics data [7]. Their 

motivation extends from earlier work on Bayesian 

implementation of the wavelet-based functional mixed 

effects models introduced by Morris and Carroll [8]. The 

approach is similar to the spline-based functional mixed 

effects models introduced by Guo [9], which involves a 

generalized mixed models equation to handle potentially 

irregular data. The method specifically deals with the 

identification of differentially expressed spectral regions 

across different experimental conditions assuming the 

alignment issue has already been taken care of. 

In this paper, we introduce a Bayesian multilevel 

functional mixed effects model with group-specific random 

effects. The method provides the capability to account for 

population homogeneous behavior (i.e., fixed systematic 

changes across the entire LC-MS spectra representing 

distinct biological groups) while allowing for modeling 

heterogeneity within a group (i.e., random effects). Also, this 
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paradigm allows us to incorporate additional hierarchies 

such as affine transformation within the model to account for 

any variability along the RT and m/z dimensions, while 

handling implicitly the normalization of peak intensities of 

peptides from multiple LC-MS spectra. The method is 

amenable to model both low and high resolution mass 

spectra, since it does not introduce superfluous signal gaps 

across multiple LC-MS spectra. We demonstrate this through 

two LC-MS datasets obtained from: (1) proteins of lysed 

E.coli cells, and (2) six groups of tryptic digests non-human 

proteins with different concentrations spiked into a complex 

sample background of human peptides. 

The remainder of this paper is organized as follows. In 

Section II, we outline the Bayesian hierarchical model 

(BHM) that describes the data modeling mechanism, based 

on the functional mixed-effects model, for alignment of LC-

MS spectra. This section explains the Markov chain Monte 

Carlo (MCMC) method using the Gibbs sampling algorithm 

for simultaneous posterior inference of all unknown 

parameters. Results and discussions demonstrating the 

applicability of the proposed method for alignment of LC-

MS spectra are given in Section III. Finally, our findings are 

summarized in Section IV.    

II. METHODS 

A. Bayesian Hierarchical Model (BHM) 

We propose a functional mixed-effects model to align LC-

MS spectra from multiple LC-MS runs. The idea behind this 

approach is two-fold: (1) to model the fixed effects as a 

realization of partially diffused integrated Gaussian 

processes which account for population homogeneous 

behaviors (i.e., fixed systematic changes in the LC-spectra 

across biological groups), and (2) to model the random 

effects as random realizations from the same partially 

integrated Gaussian processes with proper variances which, 

in turn, allow the modeling of heterogeneity within 

biological groups. The estimation procedure is implemented 

by taking advantage of the connection between B-splines (at 

the design points) and mixed effects models. Let the 

proposed functional mixed-effects model be represented 

mathematically as follows:   
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where i = 1, 2,… sj denote sample size in each group j; j = 1, 

2,…, m are indices for the mixture components that identify 

group membership with Mm << , where M  is the total 

number of observation spectra ( ∑ == m

j j
sM

1
); 

in  denotes the 

data length for each spectrum 
iy ; 

i1B  and 
i2B  are B-spline 

basis matrices associated with fixed and random effects for 

the i-th sample, respectively; 
j

γ  accounts for fixed 

systematic changes in group j; while 
ij

η  accounts for the 

random variation; s'
ij
ε  correspond to measurement errors, 

where 
ij

η  and 
ij
ε  are assumed to be independent. Alignment 

is performed using the information from the matrices 
i1B  and 

i2B  as well as from fixed systematic changes jγ  and random 

variation 
ij

η . 

Let Θ  be a vector consisting of all the unknown 
parameters in Eq. (1) and the priors. Let TT

M
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represent a set of LC-MS spectra. Then, according to the 
Bayes’ theorem 
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Using the functional mixed-effects modeling of Eq. (1), 
the likelihood function assuming that the group information 
is known and that the samples are independent is given by 
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where Z  denotes a matrix of indicator vectors 

),,,( 21 imiii zzz …=Z , such that 11 =iz  for some j, and 

jtz it ≠∀= ,0 . Hence, the joint posterior has the general 

form 
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B. Prior Distributions and Implementation 

The first step in fitting BHM is to specify all prior 
distributions. A list of the hierarchical priors assigned to the 
parameters of the model is given below. The list represents 
the standard choice of priors for mixture models: 
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where ),(.W , ),(.N  and ),(Γ  signify the Wishart, 

multivariate normal and gamma distributions, respectively. 

In specifying the prior distribution )(Θp , a hierarchical 

structure with independence assumption is considered. 

Combining this structural information with prior beliefs, we 

obtain the following joint posterior for the unknown 

parameters: 
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Using all prior and hyperprior distributions in Eq. (5), the 
full conditional distributions for the parameters are as 
follows: 
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C. Gibbs Sampling Algorithm 

Consider the Bayesian model of Eq. (4). Let the number of 
groups m be fixed and Θ  denote all of the unknown 
parameters in the model, i.e.,  
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Then, using )0(Θ  as starting value, the Gibbs sampling 
algorithm [10, 11] proceeds as follows for t = 1,2, ..., N 
iterations: 
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Note that the computations for the conditional probabilities 
are highly simplified due to the conjugacy of the prior 
distributions and their conditional independence. 

D. Modeling of Variability along the RT or m/z 

Dimensions among Different LC-MS Datasets 

The BHM presented in Eq. (1) can be easily extended to 
incorporate detail modeling. It is important to introduce 
priors that appropriately apportion the variability among the 
replicates and separating out the differing locations or scales 
along the RT or m/z dimensions. This provides a distinct 
interpretation of the LC-MS data. The alignment model and 
the associated parameters should allow each replicate sample 
to have its own affine warping transformation in RT or m/z 
dimensions. Let each spectrum )(

iji
xy  be replaced by 

)()(

iiji

d

i
ba −xy , where 

ia  and 
ib  are the scaling and shifting 

parameters for the i-th replicate LC-MS spectrum along the 
dimension d=1,2, ..., D corresponding to the m/z dimensions 
of each sample spectra. To treat alignment in the hierarchical 
structure, we include the priors with suitable hyperparametrs 
in Eq. (6). With the assumption of independence, the joint 
prior model for the time scaling and translation 

)()(),( iiii bpapbap ×= should encode the idea that the most 
likely translation is the affine warping translation and should 
also discount large and unlikely translations. A normal prior 
distribution is a good fit for this, i.e., ),(~ 2

bbi
Nb σµ  where 

bµ  and 2

b
σ  are the mean and variance of the 

hyperparameters. Moreover, we assume a normal distribution 
}1{),(~ 2 >

iaai
aINa σµ  for the time-scaling prior

ia , since its 
most likely values for the mean and variance could be 
captured from the data. Therefore, the parameters 

aµ , 

bµ , 2

a
σ  and 2

b
σ  are estimated from the data within the ensuing 

MCMC algorithm. The corresponding directed acyclic graph 
(DAG) in Fig. 1 shows the dependences of all hierarchical 
parameters in the model. 

Combining the affine warping transformation with our 
prior beliefs for 

ia  and 
ib , the posterior distribution for the 

unknown parameters is modified as follows: 
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where Θ  denotes all unknown parameters in this new model. 
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The B-spline basis matrices associated with )()(

iiji

d

i
ba −xy  

need to be updated at each iteration based on the estimates of 

RT transformation parameters 
ia  and 

ib . Moreover, these 

parameters need to be shared over the D dimensions for each 

group data since the dynamic behavior for each dimension 

occurs over the same time scale. The Gibbs sampling 

algorithm for the modified BHM of Eq. (7) proceeds in the 

same manner as that of Section C. The algorithm continues 

to draw the other parameters in the order outlined below: 
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Fig. 1. DAG of the Bayesian hierarchical model 

III. RESULTS AND DISCUSSIONS 

We used BHM to align 11 replicate LC-MS spectra 
obtained from http://www.cs.toronto.edu/~jenn/LCMS. The 
spectra are generated from proteins of lysed E.coli cells by 
capillary-scale LC coupled on-line to an ion trap mass 
spectrometer (see Listgarten et al. [6] for details). Each 
spectrum was represented by two dimensions after 
calculating the total ion count (TIC) profiles for each RT 
point across the m/z values from the original 400×2400 data 
matrix corresponding to 400 RT points (~55 min.) and 2400 
m/z bins spanning between 400 and 1600 Dalton (Da). Fig. 2 
depicts these 11 two-dimensional replicate spectra. From this 
figure, we can see that the spectra show significant shifts 
along RT as well as distortions in the ion abundance 
measurement space. We applied our BHM method for 
alignment of LC-MS spectra with respect to RT. Fig. 3 
depicts the aligned spectra. BHM reduced the coefficient of 
variation (CV) of the original TIC profiles from 82% to 
66%. The CV of the spectra aligned by DTW, COW and 
CPM were 70%, 80% and 57%, respectively. 

The second dataset was obtained from 
http://prottools.ethz.ch/muellelu/web/Latin_Square_Data.php 
It consists of 18 LC-MS spectra generated from tryptic 
digests of six standard non-human proteins (myoglobin, 
carbonic anhydrase, cytochrome c, lysozyme, alcohol 
dehydrogenase, and aldolase A) spiked with different 
concentrations into a complex sample background of human 
peptides and isolated by solid-phase Nglycocapture from 
serum. The LC-MS spectra generation for these samples was 
performed using the Fourier transformed-linear trap 
quadrupole (FT-LTQ) mass spectrometer (see Mueller et al. 
[5] for details). The 18 spectra represent six groups based on 
the concentration of the proteins. We processed the raw 
spectra and obtained for each spectrum a 2000x1300 data 
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matrix corresponding to 2000 RT points (~55 min.) and 
1300 m/z bins between 300 and 1600 Da. We calculated the 
TIC for each RT point across the m/z values and obtained 18 
two-dimensional TIC profiles (for each of the six groups). 
Figs. 4 and 5 depict TIC plots of the original and aligned 
LC-MS spectra, respectively. Fig. 6 shows the corresponding 
heat maps for the original and aligned LC-MS spectra. BHM 
reduced the average CV of the original TIC profile across 
the six groups from 18% to 13%. Both DTW and COW 
yielded a CV of 17%, while CPM resulted in a CV of 13%. 
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 Fig. 2. Plots of TIC profiles before alignment 
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 Fig. 3. TIC profiles after alignment by BHM. 
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 Fig. 4. TIC profiles before alignment. 
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 Fig. 5. TIC profiles after alignment by BHM. 

IV. CONCLUSION 

This paper utilizes a Bayesian hierarchical model for 
alignment of LC-MS spectra. Specifically, it presents a fully 
Bayesian mixed-effects model that effectively accounts for 
population homogeneous behavior across biological groups 
(i.e., fixed systematic changes) and for heterogeneity within 
groups (random effects). Bayesian inference of unknown 
parameters is carried out via MCMC method using the Gibbs 
sampling technique with conjugate priors. The proposed 
approach not only allows alignment with respect to RT and 
m/z dimensions, it also implicitly normalizes the peak 
intensities of peptides. The performance of the approach is 
assessed through two LC-MS datasets: replicate spectra 
generated from proteins of lysed E.coli cells and spectra 
representing six groups, where six proteins are spiked at 

different concentrations into a complex sample background 
of human peptides. Through these datasets, it is 
demonstrated that BHM achieves good performance in 
reducing coefficient of variation of replicate TIC profiles, 
while preserving the original experimental retention time 
(i.e., without introducing superfluous signal gaps across 
multiple LC-MS spectra). A limitation of BHM is that it 
requires considerable amount of computation time in 
aligning LC-MS data with respect to both RT and m/z 
dimensions. Future work will focus on addressing this 
limitation through optimization of the algorithm. 
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 Fig. 6. Heat  maps of the TIC profiles for Mueller et al. dataset. 
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