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Abstract— Several computational methods have been pro-
posed to assess the quality of tandem mass spectra. These
methods range from supervised to unsupervised algorithms,
discriminative to generative models. Unsupervised learning
algorithms for tandem mass spectra are not probabilistic model
based and they don’t provide probabilities for spectra quality
assessment. In this study, the distribution of high quality
spectra and poor quality spectra are modeled by a mixture of
Gaussian distributions. The Expectation Maximization (EM )
algorithm is used to estimate the parameters of the Gaussian
mixture model. A spectrum is assigned to the high quality
or poor quality cluster according to its posterior probability.
Experiments are conducted on two datasets: ISB and TOV .
The results show about 57.64% and 66.38% of poor quality
spectra can be removed without losing more than 10% of
high quality spectra for the two spectral datasets, respectively.
This indicates clustering as an exploratory data analysis tool
is valuable for the quality assessment of tandem mass spectra
without using a pre-labeled training dataset.

I. INTRODUCTION

Automatic quality assessment of tandem mass spectra is

an important module in the peptide identification pipeline.

Spectral quality assessment can be used to discover false

negatives which are identifiable spectra but misidentified [1]

and eliminate false positives which are unidentifiable spectra

but also misidentified by some peptide identification algo-

rithms [2]. In addition, it can help to find post-translational

peptides [3]. Finally, the common use of quality assessment

algorithm is as a pre-filer to filter out the unidentifiable

spectra before peptide identifications [4]. Because mass

spectrometry is a high-throughout technology, computational

algorithms for automatic quality assessment are needed to

speedup the analysis of tandem mass spectra.

In the past, several supervised machine learning algorithms

have been proposed to assess the quality of tandem mass

spectra [3]. For supervised machine learning, a labeled

training dataset is needed to train a classifier, and the trained

classifier is used to classify spectra as high quality or poor

quality. Ideally, the spectra of the training set should be

identified by several peptide identification algorithms and
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manually validated, i.e., the set should be correctly labeled

without or with very few falsely labeled spectra. However,

such spectral data sets are hard to obtain in most cases. Worse

still, tandem mass spectrometers may produce different spec-

tra even for the same peptide under different experimental

conditions. Therefore, the training and testing spectra may

not come from the same probability distribution and the

trained classifier may fail to discriminate poor quality spectra

from high quality ones. The performance of classifiers can be

improved by training a specific classifier for each experiment.

Besides, an alternative choice for quality assessment of

tandem mass spectra is clustering algorithms which do not

need a labeled training set. Recently, several clustering

algorithms have been used for quality assessment of tandem

mass spectra [5], [6]. However, these algorithms do not use

a probabilistic model of the spectral feature data and thus

do not provide posterior probabilities for the assignment

of spectra to clusters. The probabilistic models give us a

meaningful way to cluster data and we can easily measure

the fitness of data to models. The posterior probabilities from

a probabilistic model are very useful, for example, we can

use them to make predictions [7].

In this paper, we use the probabilistic model based clus-

tering algorithm to perform quality assessment of tandem

mass spectra. In addition to the ease of analyzing spectra by

assuming a probabilistic model, the model on one dataset can

be used to initialize the EM algorithm to fit other datasets,

and thus the algorithm provides an automatic method to

assess the qualities of tandem mass spectra. The remainder

of this paper is organized as follows. Section II introduces

the model based clustering algorithm. In Section III, two

datasets, the ISB and the TOV datasets, are used to

investigate the performance of the algorithm. Section IV

concludes this study and gives some directions for further

improvement.

II. METHODS

According to the different definitions of clustering, the

existing clustering methods can be classified as combinato-

rial, mode seeking algorithms and model based algorithms.

Combinatorial algorithms do not assume a probability dis-

tribution on the data, and samples are assigned to clusters

by optimizing an objective function [8]. The mode seeking

methods take a nonparametric approach to find the modes

of the probability density function of data, and a sample is

assigned to its nearest mode [9]. The mode seeking methods

may be good choices if the structure of data is very complex

and can not be modeled by a simple parametric probability

distribution. The probabilistic model based methods assume
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samples are independently and identically distributed from a

predefined probability density function such as a mixture of

Gaussian distributions. After inferring the unknown parame-

ters, clustering is achieved by assigning samples to different

Gaussian components [10]. When the assumed probabilistic

distribution is correct, the model based algorithm can achieve

good clustering results.

To use machine learning algorithms for automatic quality

assessment of tandem mass spectra, each spectrum should

be represented by a fixed length feature vector. In this study,

we use the top 10 features selected by the SV M -RFE
algorithm as described in [11].

A. Model based clustering

After exploratory data analysis and from previous research

[4], the distribution of high quality spectra and poor quality

spectra can be modeled by a mixture of Gaussian distribu-

tions:

p(x) =
K∑

k=1

πkN (x|µk, Σk) (1)

where K is the number of mixture components and here K =
2; one component corresponds to high quality spectra while

the other component corresponds to poor quality spectra. πk

is the mixture coefficient. N (x|µk, Σk) is a Gaussian density

function with its mean of µk and covariance matrix of Σk,

and x is a feature vector.

For Gaussian mixture models, it is difficult to use the

maximum likelihood method to estimate the parameters

because there exists a summation over k that occurs in the

log-likelihood function. However, we can introduce a latent

variable z which is the label of x. Here z is a K-dimensional

latent variable. The value of the k-th element of z satisfies

zk ∈ {0, 1} and
∑K

k=1
zk = 1. The distribution of z is

specified by the mixture coefficients

p(zk = 1) = πk (2)

The joint distribution of x and z is

p(x, z) = p(x|z)p(z) =
K∏

k=1

N (x|µk, Σk)zkπzk

k
(3)

The posterior probability of z given x is

p(z|x) =

∏
K

k=1
N (x|µk, Σk)zkπzk

k∑
zk

∏
K

k=1
N (x|µk, Σk)zkπzk

k

(4)

Note that only one k makes zk = 1. Thus

p(zk = 1|x) =
N (x|µk, Σk)πk∑

K

k=1
N (x|µk, Σk)πk

(5)

Suppose that we are given data X which is an N × D
matrix. The n-th row xT

n is a feature vector which represents

the quality of the n-th spectrum. The corresponding latent

variable matrix is Z, which is an N×K indicator matrix and

the value of znk satisfies znk ∈ {0, 1} and
∑

K

k=1
znk = 1.

Given X and Z, the likelihood function of µ, Σ, π becomes

p(X, Z|µ, Σ, π) =

N∏

n=1

K∏

k=1

N (xn|µk, Σk)znkπznk

k
(6)

The log-likelihood function becomes

ln p(X, Z|µ, Σ, π) =
N∑

n=1

K∑

k=1

znk(lnN (xn|µk, Σk) + lnπk)

(7)

Now suppose that we already know µi

k
, Σi

k
, πi

k
, then the

posterior distribution for znk is (E-step)

p(znk = 1|xn, µi

k
, Σi

k
, πi

k
) =

πi

k
N (xn|µi

k
, Σi

k
)

∑
K

k=1
πi

k
N (xn|µi

k
, Σi

k
)

(8)

Now compute the score function

Q =
∑

znk

ln p(X, Z|µ, Σ, π)p(znk = 1|xn, µi

k, Σi

k, πi

k)

=

N∑

n=1

K∑

k=1

p(znk = 1|xn, µi

k
, Σi

k
, πi

k
)(lnN

∗ (xn|µk, Σk) + lnπk) (9)

Maximizing Q under the constraint of
∑

K

k=1
πk = 1 by the

use of Lagrange multiplier, we get (M -step)

Nk =

N∑

n=1

p(znk = 1|xn, µi

k, Σi

k, πi

k)

πi+1

k
=

Nk

N
(10)

µi+1

k
=

1

Nk

N∑

n=1

p(znk = 1|xn, µi

k, Σi

k, πi

k)xn (11)

Σi+1

k
=

1

Nk

N∑

n=1

p(znk = 1|xn, µi

k
, Σi

k
, πi

k
)

∗ (xn − µi+1

k
)(xn − µi+1

k
)T (12)

Given initial values for π, µ and Σ, the EM algorithm

alternates between the E-step and the M -step, and finally

finds a local maximum of the incomplete likelihood function

(integrate out Z in Equation (7) ).

III. RESULTS AND DISCUSSION

A. Datasets and performance evaluation

In this study, the ISB and the TOV datasets are used

to investigate the performance of the model based clustering

algorithm. Below is a brief description of the two datasets.

(1) ISB dataset consists of 37, 044 tandem mass spectra

from 18 control mixture proteins [12], and these spectra were

searched using Sequest against a human protein database

appended with sequences of the 18 proteins. 2772 spectra

were determined to be correctly identified after manual

validations. These data were also analyzed by InsPecT, and

annotated another 820 possibly modified peptides [13]. These

3592 spectra were labeled as “high” quality in this study, and

other spectra were labeled as “poor” quality.
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TABLE I

THE CLUSTERING RESULTS OF THE EM ALGORITHM.

Experiments ISB TOV

AUC TNR AUC TNR

1 0.7647 57.64% 0.8214 66.33%

2 0.7647 57.64% 0.8214 66.33%

3 0.7647 57.64% 0.8214 66.33%

4 0.7647 57.64% 0.8214 66.36%

5 0.7647 57.64% 0.8214 66.33%

6 0.7647 57.64% 0.8214 66.36%

7 0.7647 57.64% 0.8214 66.36%

8 0.7647 57.64% 0.8592 58.32%
9 0.7647 57.64% 0.8214 66.33%

10 0.7647 57.64% 0.8214 66.36%

(2) TOV dataset consists of 22, 576 tandem mass spec-

tra, and these spectra were searched against a subset of

the Uniref100 database (release 1.2, http://www.uniprot.org)

containing 44, 278 human protein sequences using Sequest.

2197 spectra were determined to be correctly identified after

validated by PeptideProphet [14] (PeptideProphet scores are

equal or greater than 0.9). All these 2197 spectra were

labeled as “high” quality in this study, and all the other

spectra were labeled as “poor” quality.

To evaluate the performance of the EM algorithm, we

reported true positive rates (TPR, the fraction of positives

correctly classified as positives), true negative rates (TNR,

the ratio of negatives correctly classified as negatives ) and

false positive rates (FPR, the fraction of negatives mis-

classified as positives). We also reported receiver operating

characteristic (ROC) curves, which are a plot of TPR as

a function of FPR. The area under the curve (AUC) was

used for comparing classification results. AUC = 1 means

perfect classification and 0.5 indicates random guess.

B. The clustering results of the EM algorithm

The EM algorithm has been run 10 times on ISB and

TOV datasets. The clustering results are shown in Table I.

The TNRs are calculated when TPRs are fixed at 90%. The

proposed clustering algorithm can remove about 66.36% of

poor quality spectra while losing only 10% of interpretable

spectra for TOV dataset. While for the spectra of the ISB
dataset, about 57.64% of poor quality spectra can be safely

removed without losing more than 10% of high quality

spectra.

Table II shows the clustering results for the threshold of

zero, i.e., a spectrum is assigned to the cluster with the larger

posterior probability. Even using this simple threshold, about

53.47% (= 17853/(17853+15599)) of poor quality spectra

can be removed while losing only 6.26% of high quality

spectra for the spectra of ISB dataset. For the spectra of

TOV dataset, about 53.73% (= 10949/(9430+ 10949)) of

poor quality spectra can be removed while losing only 3.41%
(= 75/(2122+ 75)) of high quality spectra. In other words,

more than 53% of poor quality spectra can be removed

by using the zero threshold while very few of high quality

spectra are lost.

TABLE II

THE DISTRIBUTION OF SPECTRA IN DIFFERENT CLUSTERS WITH

THRESHOLD OF ZERO. FOR ISB DATASET, THE NUMBERS ARE THE

AVERAGE OF THE 10 RUNS. FOR TOV DATASET, THE NUMBERS ARE

THE AVERAGE OF 9 RUNS (EXCLUDING THE 8-th RUN)

Dataset Predicted High Quality Predicted Poor Quality

ISB

High Quality 3367 225
Poor Quality 15599 17853

TOV

High Quality 2122 75
Poor Quality 9430 10949

TABLE III

THE CLUSTERING CENTERS OF THE EM ALGORITHM. THE POTENTIAL

SALIENT FEATURES ARE HIGHLIGHTED. THE MAJORITY OF SPECTRA IN

CLUSTER 1 ARE HIGH QUALITY SPECTRA WHILE THOSE IN CLUSTER 2

ARE POOR QUALITY SPECTRA.

# ISB TOV

Cluster 1 Cluster 2 Cluster 1 Cluster 2

B5 0.51 -0.54 0.60 -0.63

F7 -0.20 0.21 0.07 -0.07
W1 0.54 -0.57 0.65 -0.69
F4 0.00 0.00 0.46 -0.48
B3 0.04 -0.04 -0.31 0.33
W4 0.49 -0.51 0.54 -0.57

W7 0.56 -0.59 0.67 -0.70

Ŵ4 -0.84 0.89 -0.77 0.81

F5 -0.11 0.12 0.37 -0.39
W10 0.53 -0.55 0.63 -0.66

C. The salient features for EM algorithm

Irrelevant features generally have little power for clus-

tering methods to discriminate poor quality spectra from

high quality ones. For this reason, we want to find the

discriminative features for the EM clustering algorithm

and we call them salient features. Salient features can be

found from the cluster centers of EM algorithm. Since each

feature is normalized to have mean of 0 and variance of 1,

the features with large absolute values between two cluster

centers could be salient features for cluster analysis.

Table III lists the cluster centers from the 10 runs of

the EM algorithm. For ISB dataset, the numbers are the

average of the 10 runs. For TOV dataset, the numbers

are the average of 9 runs (excluding the 8-th run). From

the clustering centers of each dataset, some features have

nearly the same values in both clusters while values for other

potential salient features vary a lot. These potential salient

features are highlighted in Table III.

Figure 1 plots the absolute values of feature differences

between two cluster centers in descending order. For ISB
dataset, from Figure 1 (a), the four features with small ab-

solute values of feature difference may be discarded because

their values are far smaller compared to other six features.

For TOV dataset, the cluster center differences do not show

a distinct partition line compared to those of ISB dataset but

they show a similar trend of decrease. The EM algorithm

has been applied to the dimension-reduced feature sets in
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Fig. 1. Plot of the absolute values of clustering center difference in
descending order for ISB dataset (a) and TOV dataset (b).

TABLE IV

THE CLUSTERING RESULTS WHEN USING SIX SALIENT FEATURES.

Experiments ISB TOV

AUC TNR AUC TNR

1 0.7674 58.16% 0.8290 66.99%

2 0.7675 58.16% 0.8290 66.99%

3 0.7674 58.16% 0.8289 66.87%

4 0.7674 58.16% 0.8214 66.36%

5 0.7674 58.16% 0.8290 66.99%

6 0.7674 58.16% 0.8290 66.99%

7 0.7674 58.16% 0.8290 66.99%

8 0.7674 58.16% 0.8290 66.99%

9 0.7674 58.16% 0.8290 66.99%

10 0.7674 58.16% 0.8290 66.99%

which only the six features with large absolute values of

cluster center difference are retained. From Table IV, it can

be seen that the clustering results are better than those using

the whole 10 features.

D. Determine the quality of spectra in each cluster

From the cluster centers, we can easily determine the

spectra in which cluster are of high quality or poor quality.

From the definition of B5, W1, W4, W7 and W10 [11],

the high quality spectra should have larger value for these

features than poor quality spectra do. In cluster 1, the values

of these features are larger than those in cluster 2. Ŵ4 is the

ratio of the number of peaks which have a relative intensity

greater than 1% of the total intensity to the total number

of peaks in a spectrum. For this feature, it is difficult to

image whether the high quality spectra should have larger

values or not. For this reason, we compute the mean for

both high quality and poor quality spectra of this feature in

ISB dataset, and the values are −0.77 and 0.08, respectively.

Clearly, the high quality spectra have smaller values for this

feature. For both ISB and TOV datasets, the value of Ŵ4

in cluster 1 is smaller than that in cluster 2.

IV. CONCLUSIONS AND FURTHER IMPROVEMENT

This study uses a mixture of Gaussian distributions to

model the distribution of spectral feature data. Experimental

results show the mixture of Gaussian distribution is a rea-

sonable model of the spectral feature data.

From Table III, the cluster centers of the two datasets are

similar although they are not exactly the same. Therefore,

although we may not use the obtained probabilistic model

on one dataset to model the distribution of spectral features

in other datasets, the model can be used to initialize the EM
algorithm to fit other datasets. We will further analyze the use

of model based clustering algorithms for automatic quality

assessment of tandem mass spectra in subsequent studies.
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