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Abstract— Ventricular fibrillation (VF) is the most lethal
of cardiac arrhythmias that leads to sudden cardiac death
if untreated within minutes of its occurrence. Defibrillation
using electric shock resets the heart to return to spontaneous
circulation (ROSC) state, however the success of which depends
on various factors such as the viability of myocardium and the
time lag between the onset of VF to defibrillation. Recent studies
have reported that performing cardio pulmonary resuscitation
(CPR) procedure prior to applying shock increases the survival
rate especially when VF is untreated for more than 5 minutes.
Considering the limited time within which the VF has to
be treated for better survival rates, the choice of the right
therapy (shock parameters, shock first or CPR first, drug
administration) is vital. In aiding this choice, it would be of
immense help for emergency medical staff (EMS) if an objective
feedback could be provided at near real-time rate on the VF
characteristics and its relation to the shock outcomes. Existing
works in the literature have demonstrated correlation between
the characteristics of the VF waveform and the outcome
(ROSC) of the defibrillation. The proposed work improves on
this by attempting to arrive at a near real-time monitoring
tool in aiding the EMS staff. Using data collected from 16
pigs during VF, the proposed wavelet methodology achieved an
overall accuracy of 94% in successfully predicting the shock
outcomes.

Index Terms— Ventricular fibrillation, CPR, ROSC, Wavelet
Analysis

I. INTRODUCTION

Cardiac resuscitation is a process of reviving the heart
to the ROSC state after a cardiac arrest. Timing is cru-
cial in cardiac resuscitation as the viability of myocardium
decreases with prolonged untreated VF. Literature recom-
mends direct defibrillation in cases where the time of VF
onset is less than 5 minutes and for cases greater than
5 minutes chest compression and ventilation prior to the
defibrillation shocks are shown to increase the survival
rates [1]. To aid the EMS staff and improve the survival
rates, prediction methodologies were proposed that would
analyze the VF waveform characteristics and recommend
appropriate sequence of therapy that might result in ROSC.
Many amplitude and spectral features were proposed with
varying sensitivity and specificity in predicting the success of
the shocks using retrospective defibrillator data [2], [3], [4].
Amplitude Spectrum Analysis (AMSA) measure extracted
from the pre-shock VF waveform is one of the well known
predictor of resuscitation success [2]. A value of 21 mv Hz
was recommended as a threshold, above which a successful
outcome is predicted. Scaling exponent is another measure
of VF waveform morphology whose values increase with
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the duration of VF and can be used to recommend different
combination of therapies [3].

While most of the existing prediction techniques rely
on temporal or spectral features, the best way of analyze
non-stationary VF waveform characteristics would be a
joint time-frequency/time-scale approach. Time-scale anal-
ysis would be more suitable if morphological features are
desired. Wavelet transform is a time-scale approach where
a signal is modeled using dilated and scaled versions of a
mother wavelet and computationally less expensive for near
real-time extraction of features. There are existing works
using wavelets in predicting the success of defibrillation and
in these works, wavelet entropy based measure reflecting
the temporal behavior of the VF waveform was identified to
perform better in discriminating the shock outcomes [4], [5].
Compared to these works, the proposed work has the advan-
tage of computing a near real-time temporal evolution of VF
characteristics in terms of a novel and meaningful wavelet
feature which mimics a real world scenario. Moreover, the
proposed work also correlates the CPR outcomes with the
prediction of the proposed technique. The paper is organized
as follows: Section II provides the details on the proposed
technique, database, and experimental protocol, Section III
discusses the results obtained in discriminating the ROSC
and non-ROSC outcomes using the proposed wavelet feature,
and conclusions are provided in Section IV.

II. METHODS

A. Database and Experimental Protocol

Pig VF has been used extensively in the literature to study
human VF as the heart size appears closest to humans. The
database used in this study consisted of 16 healthy Yorkshire
pigs weighing 25-35 kgs. Each of the pigs were anesthetized
for the duration of the experiment. The surface ECG was
acquired using lead II and the coronary perfusion pressure
(CPP) was computed by subtracting the aortic (Ao) pressure
from right atrial (Ra) pressure both measured using Millar
catheters. The surface ECG was sampled at 1 kHz and the
pressures at 500 Hz, however for the analysis all the signals
were down-sampled to 250 Hz to reduce the computational
complexity. Baseline sinus rhythm was recorded and VF was
induced using burst pacing. After the initiation of VF, ECG,
Ao, Ra, and airway pressures were recorded continuously
throughout the experimental protocol. The pig was left
untreated for 5 minutes in VF simulating the ischemic phase.
After the 5-minute duration the pigs were ventilated and CPR
was performed for 3 minutes. After the 3-minute CPR period
the pig was shocked using defibrillator with 360 Joules. A
return to sinus rhythm and persistence of the same for 10
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minutes post shock was considered ROSC and non-ROSC
otherwise. The block diagram in Fig. 1 briefly describes the
protocol and our proposed methodology.

5 min 
untreated VF 
(Ischemia)

3 min 
CPR 

(Reperfusion)
Defibrillation

Success

Failure

VF Waveform 
(Wavelet) 
Analysis

Prediction

Fig. 1. Block diagram explaining the proposed methodology and experi-
mental protocol

B. Wavelet Analysis

The proposed method uses continuous wavelet transform
(CWT). In CWT a signal x(t) is modeled using all possible
translated and dilated version of a mother wavelet ψa,b

where a and b are the dilatational (or scale) and translational
parameters. It is given by

CWTx(a, b) =
1√
a

∫ ∞

−∞
x(t) ψ∗

(
t− b

a

)
dt (1)

The signal x(t) in our case will be the ischemic (pre-shock
& pre-CPR) portion of the VF waveform and the wavelet
used for the analysis is Morlet wavelet. Morlet was chosen
as it had a better match with the VF waveforms especially
when the VF waveforms exhibited organization. We did
test with other wavelets (Daubechies, Gaussian, Shanon)
and our initial analysis showed Morlet wavelet yielding
better results. Prior to decomposing the VF waveforms using
wavelet analysis, a band pass filter (3 - 21 Hz) was applied to
eliminate low and high frequency artifacts. Filtering did help
the processing and improved the results minimally. Filtered
VF waveforms during ischemic phase were then segmented
into 5s (i.e. 1250 samples at 250 Hz) segments to mimic a
real-time acquisition with a buffer of 5s data. Sequentially
each of the 5s data was decomposed using a range of wavelet
scales whose corresponding frequency spanned the range of
VF bandwidth.
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Fig. 2. Illustration of scale distribution width (SDW) feature extracted
from an organized portion of VF
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Fig. 3. Illustration of scale distribution width (SDW) feature extracted
from an disorganized portion of VF

C. Scale Distribution Width (SDW)

The wavelet decomposition coefficients obtained by de-
composing 5s VF segments were analyzed and found that
depending upon the signal composition of the VF waveform,
the energy distribution over the range of scales varied. In
other words the analyzing wavelet at each scale a captured
different amounts of signal energy depending upon the signal
characteristics. If E is the total signal energy and a1 to aN

are the scales used in the wavelet analysis that could model
the signal completely, then it can be written as

Esig = Ea1 + Ea2 + Ea3 + ...+ EaN
(2)

The normalized distribution of the energy over all scales
were computed and the width of the distribution i.e. scale
distribution width (SDW) was extracted as the wavelet fea-
ture. Depending upon the signal composition the number
of scales that would have a significant contribution to the
total signal energy captured varies and this is reflected in the
width of the distribution. So for a monocomponent portion
of a VF waveform the distribution will be a sharp and
tall peak indicating that very few scales were required to
model most of the signal energy. The vice-versa for a multi-
component portion of a VF waveform where the distribution
width will be larger. This could serve as an indicator of the
morphological changes happening during VF and could be
indirectly used as a measure of signal composition that could
be tracked over time. As a demonstration in Figs. 2 and
3 we have shown in the top panels two 5s VF segment
extracted at different times from a 5 minute VF during
ischemia in a pig. The 5s segment in the top panel of Fig.
2 is more organized and will need fewer scales to model
compared to the 5s segment in the top panel of Fig. 3. The
corresponding bottom panels show the wavelet scale-energy
distribution and the difference in the SDW is highlighted.
This clearly demonstrates that the SDW could be used as an
indicator (feature) of signal composition during the temporal
evolution of VF. We chose to measure the width of the
distribution at half the height of the peak of the distribution.
This choice was made to avoid the width measurement not to
be influenced by minor or insignificant changes in the signal
and at the same time not to make it too insensitive (which
will defeat the purpose of the feature).
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The proposed feature can be seen as a measure of
bandwidth over time which could also be extracted from
short-time Fourier methods, however the achievable time-
frequency resolution and the flexibility in the choice of
the analyzing wavelet and size of the windows make the
proposed feature attractive for the application in hand. The
proposed feature closely follows the concepts of computing
the scale-energy distribution explained in [6], however does
not compute the wavelet entropy from the distribution values,
instead measures the width of the distribution. Entropy is a
information theory measure that quantifies uncertainty (or
randomness) without attaching a physical meaning to it. It
is insensitive to the arrangement of the distribution i.e. the
entropy will be same as long as a set of distribution values
are present irrespective of in which order they occur. Since
the proposed SDW feature is always measured around the
peak of the scale-energy distribution i.e. around the dominant
scale or inversely a proportional dominant frequency, it can
be seen as an objective and meaningful bandwidth measure
around the dominant signal frequency. Statistically SDW has
similarities to the derivatives of standard deviation (STD) and
interquartile range of the normalized energy distribution. We
compared SDW with STD and found SDW performing better
as the distribution is not always normal. The proposed feature
is also different from the wavelet entropy marker proposed
in [4] where the entropy is computed in the temporal (i.e.
along b in Equ. 1 ) direction using the maximum modulus of
the scalogram at a particular scale. SDW on the other hand
is computed from the scale-energy distribution and the width
of the distribution is measured along the vertical axis of the
scalogram (i.e. along a in Equ. 1).

III. RESULTS

A. Temporal Evolution of SDW

In our database of 16 pigs, 11 of them were success-
fully resuscitated and 5 of them did not return to ROSC.
We extracted the wavelet SDW feature for each of the
pig during the 5 minutes of ischemia in segments of 5s.
Segmentation was done to mimic a real-time update monitor
as explained before. Hence for 5 minutes we had 60 5s
segments and discarding the initial 25 s and the last 25 s to
avoid border effects, we were left with 50 points showing
the temporal evolution of SDW feature during ischemia.
Faster implementation of CWT can be used to further reduce
the computational complexity [7]. We then correlated the
temporal evolution of the SDW feature with the success-
ful and unsuccessful results. The discussion of the results
in this subsection assume that the CPR and Defibrillation
stages did not influence the outcomes. However, in the later
Section III-C we will revisit the results to verify if CPR and
Defibrillation stages did influence the observed results.

The top panel of Fig. 4 shows the SDW feature over
approx. 4.1 minutes (i.e. over 50 points of 5 s each) for
all the 11 successful ROSC cases. In the figure (top panel),
all the 11 cases are superimposed on each other. A clear
upward trend can be observed in the evolution of the SDW
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Fig. 4. Temporal evolution of SDW feature for all successful (top panel)
and unsuccessful (bottom panel) cases

feature over time. Since smaller widths indicate more or-
ganized components (mono) and larger widths unorganized
components (multi), from the plot it could be inferred that the
VF waveforms of the pigs that were successfully resuscitated
in this database tend to get disorganized over time during
ischemia. In the plot, we have shown one successful case in
dotted line just to indicate that it deviates from other curves
and when we verified the corresponding VF data we did
see changes in signal morphology that is reflected by SDW.
Comparing this result with that of the 5 unsuccessful cases
in the bottom panel of Fig. 4, it is evident that in most cases
the trend is in opposite direction compared to that of the
successful cases. Except in one of the unsuccessful case, the
mean value of the plateau of the curves (i.e. after the initial
portion of the curve) is significantly different. In the plot,
we have also shown one unsuccessful case that is deviating
from the rest in dotted line to indicate that it matches better
with the successful cases.

We then averaged out the individual cases to obtain the
average evolution pattern of the SDW feature for both
successful and unsuccessful cases. The average curves are
shown Fig. 5. The difference between the average curves are
clearly evident. Even excluding the outliers (the cases shown
in dotted lines in Fig. 4) from the curves, we would still
be able to visualize a clear distinction between the average
curves and this could serve as a reference to the EMS staff to
monitor the VF waveforms over ischemia and decide on the
course of action. Most of the existing works use 2.5 s - 10 s
pre-shock VF data for predicting ROSC and hence may not
be directly comparable to our above approach of using the
temporal evolution of SDW as a clue for predicting ROSC.

B. Pattern Classification

In the second part of the analysis we extracted the mean
value of the SDW feature for each of the pigs over the 5
minute duration (i.e. one mean value of all the SDW feature
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Fig. 5. Average temporal evolution of SDW feature for successful (solid
line) and unsuccessful (dotted line) cases

values extracted in 5s segments over 5 minutes) and fed to a
linear classifier to perform a statistical separation between the
groups using linear discriminant analysis. The analysis was
performed using SPSS software [8]. Since the database was
small we cross validated the results using Leave-One-Out
method (LOOM) [9]. In LOOM in each trial one sample is
taken out of the database and the classifier is trained with the
remaining samples. After training the classifier, the left out
sample is used as a test set to identify its class membership.
This is repeated for each of the samples and the average
classification accuracy is computed over all the trails. The
average classification accuracy is then presented as the cross
validated performance of the classifier. The results are shown
in Table I. From the table it could be observed that all the
11 successful cases were correctly classified while only 4 of
the unsuccessful cases were correctly classified. An overall
classification of 93.8% was achieved. When we verified
the temporal evolution of SDW feature for the misclassifed
unsuccesful case, it did match with the average curve of the
successful case than the unsuccessful cases. The misclassfied
unsuccessful case is same as the one shown in dotted line in
the bottom panel of Fig. 4.

Method Groups Unsuccessful Successful Total
Cross-validated Unsuccessful 4 1 5

Successful 0 11 11

% Unsuccessful 80 20 100
Successful 0 100 100

TABLE I

CROSS-VALIDATED: LINEAR DISCRIMINANT ANALYSIS WITH

LEAVE-ONE-OUT METHOD, % - PERCENTAGE OF CLASSIFICATION.

C. Influence of CPR and Defibrillation Stages

We computed the diastole CPP for all successful and
unsuccessful cases during CPR to validate that the efficacy
of CPR did not bias the results. A CPP of >15mmHg
considered to be an indicator of good CPR. The average
CPP measured over the last 5 beats before defibrillation for
the successful cases was found to be 33 mmHg with only 2

of the 11 cases having a CPP of <15 mmHg. The average
CPP for the unsuccessful cases was found to be 10 mmHg
with only 1 of the 5 cases having a CPP of >15 mmHg. An
exception in the pressure value in the successful category (i.e.
<15mmHg) does not affect the hypothesis as the supposedly
bad CPR (indicated by <15 mmHg) did not change the result
from what the trend of the SDW feature predicted during
ischemia. The vice-versa is informative i.e. when the trend
of SDW predicts an unsuccessful outcome but in reality if
it ends up as a successful outcome than this could be due
to a good CPR which helped the resuscitation process. We
did not have this scenario in our database. However, we
did have another possibility where among the unsuccessful
cases, in one of the unsuccessful case the trend of SDW
feature indicated a better fit with the successful cases (this is
the unsuccessful case shown in dotted line in Fig. 4) but
the actual result was unsuccessful. When we verified the
CPP for this particular case, interestingly the CPP was 20.94
mmHg (i.e. >15 mmHg, good CPR) indicating indeed this
was a candidate for a successful defibrillation, but it failed
in reality. Except for this one unsuccessful case we did not
observe a negative influence on the results by either the CPR
or defibrillation stages and hence the model developed using
SDW feature in discriminating successful from unsuccessful
shock outcomes is valid and robust.

IV. CONCLUSIONS AND FUTURE WORKS

We have presented a novel wavelet based feature to predict
the cardiac resuscitation outcomes by analyzing the VF
waveforms during ischemia. The proposed SDW feature can
be used to obtain a near real-time update of the VF char-
acteristics which could be used by the EMS staff to choose
the right therapy. The proposed methodology achieved high
classification accuracies and the results were verified using
the LOOM cross validation technique. However the proposed
method needs to be verified using larger human VF databases
and compared with similar existing approaches.
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[7] A. Muñoz, R. Ertlé, and M. Unser, “Continuous wavelet transform with
arbitrary scales and O (N) complexity,” Signal Processing, vol. 82,
no. 5, pp. 749–757, 2002.

[8] SPSS Inc., “SPSS advanced statistics user’s guide,” in User manual,
SPSS Inc., Chicago, IL, 1990.

[9] K. Fukunaga, Introduction to Statistical Pattern Recognition. San
Diego, CA: Academic Press, Inc., 1990.

6764


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

