
  

  

Abstract— Nerve localization using peripheral nerve 

stimulation (PNS) is affected by tissue properties, the anatomy 

surrounding the nerve, and characteristics of the stimulus 

waveform. A better understanding of the factors influencing 

PNS should lead to improved nerve localization techniques for 

use in regional anesthesia. A finite element approach is 

described here that includes capacitive effects and accounts for 

frequency-dependent tissue properties in a computationally 

efficient manner. The modeling approach can be applied to 

other bioelectric problems where capacitive effects may be 

important. 

I. INTRODUCTION 

eripheral nerve stimulation (PNS) is a widely used 

technique for localizing nerves in regional anesthesia 

[1,2].  This technique utilizes a needle which provides both 

electrical stimulation and drug delivery.  The physician 

advances the needle towards the nerve to be anesthetized 

while electrically stimulating the nerve.  Nerve excitation is 

typically observed by means of visible muscle twitch.  When 

a threshold response is obtained with a low target current 

(typically in the range of 0.5 mA) the needle is judged to be 

in close proximity to the nerve and anesthetic is delivered.  

The ability to localize nerves using PNS is affected by a 

variety of factors, including the stimulus waveform, local 

anatomy, and tissue properties.   Because PNS is invasive, 

investigating these factors using computer modeling is 

attractive.  A computer model of PNS was recently 

developed [1] and used to study the effects of stimulus 

waveform. While [1] models the tissue as a homogenous 

half-space, the work described here studies PNS using a 

finite element model (FEM).  This allows the modeling of 

spatially varying tissue properties and realistic anatomy, 

which were recently hypothesized to be causes of observed 

variability in the stimulation currents needed to elicit muscle 

twitch in PNS [3]. Realistic modeling should help improve 

the understanding of PNS and will hopefully lead to nerve 

block procedures with improved safety and success rates.   

The bioelectric field calculation approach used here 

includes several enhancements over standard bioelectric 
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modeling.  Most modeling studies make the assumption that 

the electrical field can be regarded as quasistatic and that 

capacitive effects can be neglected [4-5].  In some scenarios 

capacitive effects can be noticeable, for example when 

modeling short-duration pulses such as those used in PNS. 

Capacitance in biological tissues is generally frequency-

dependent, giving rise to dispersion effects.  These effects 

have been modeled using a combined time domain/frequency 

domain solution [5], at the cost of greater model complexity.    

In many cases, both the magnitude and phase of the 

electrical field vary smoothly with frequency. This suggests 

the use of an interpolation approach in which the field 

equations are solved at a smaller number of frequencies, then 

interpolated to a set of finely spaced FFT frequency bins and 

inverse transformed.  This approach leads to a computational 

savings of roughly two orders of magnitude as compared to a 

brute-force direct calculation.  While straightforward, the 

interpolation approach does not appear to have been 

previously applied to bioelectric field modeling.  A second 

enhancement is that the exact Helmholtz solution was used.  

This solution was found to be as computationally fast as 

approximate quasistatic solutions. 

The electrical field calculated from the FEM model is 

used to excite a nerve model consisting of individual fibers 

that are described by the Frankenhaeuser-Huxley fiber model 

[7].  Stimulus response curves calculated for the nerve are 

used to predict nerve response as a function of stimulus 

current and needle position.  Finally, an example is shown of 

simulating a PNS procedure. 

II. METHODS 

A. Bioelectric field equation 

Maxwell’s equations predict that the electric and magnetic 

fields in a media with sources satisfy the inhomogeneous 

wave equation. It then follows that the Fourier components 

of the scalar and vector potentials satisfy respectively the 

scalar and vector Helmholtz equations. A brief but clear 

derivation is given in a recent paper [6] which discusses 

various approximations in modeling electric fields in 

biological tissues.  Written in terms of the complex σc(ω) = 

σ(ω) + jωεr(ω) ε0, the Helmholtz equation is  

     ( ) ( ) Jj cc ⋅∇=−∇ ϕωµωσϕωσ
22

   (1) 

where σ and εr are the conductivity and relative permittivity 

of the tissue, φ is the potential, ε0 is the permittivity of 

vacuum, µ is the magnetic permeability, and the right-hand 

side represents a current source (assumed below to be a point 
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source).   As noted, the conductivity and permittivity are 

assumed to be functions of frequency.   

Boundary conditions for the problem are φ=0 on the 

ground electrode, no current flowing through tissue/air 

surfaces, and continuity of current across internal interfaces.  

Together, Eq. 1 and the boundary conditions describe a 

problem that can be solved to give the electrical field.   

Most published studies rely on simplifications of Eq. 1, 

typically ignoring propagation effects, tissue capacitance, 

and frequency-dependence of tissue properties [8].  A 

method for including frequency-dependent tissue properties 

is described in the next section.  A numerical study was 

made of using the exact Helmholtz solution in the FEM 

model vs. approximate quasistatic solutions.  The Helmholtz 

solution matched closely to a quasistatic solution that 

retained capacitive effects.  However, the Helmholtz solution 

did not noticeably increase the computational load, so the 

exact solution is used in this paper. 

B. Modeling of frequency-dependent tissue properties 

A current pulse x(t) is applied to stimulate the nerve.  The 

resulting waveform in the tissue can be found using a 

frequency-domain solution.  The current pulse is first 

transformed (via FFT) into the frequency domain, giving a 

spectrum X(f).  Let g(f,R) be the calculated field for each 

frequency and spatial point, for a unit amplitude current 

source.  The frequency-domain solution g(f,R) is then 

weighted by X(f), and is inverse transformed to find the time 

domain solution: 

    ( ) ( )[ ])(,, 1 fXRfgRt ⋅ℑ= −ϕ     (2) 

where 
1−ℑ  denotes the inverse Fourier transform.  Note that 

g(f,R) must be found for every frequency, and that accurately 

representing the pulse may require several thousand 

frequency bins.  

Here, an interpolation approach is used for solving Eq. 2.  

The basic observation behind the interpolation approach is 

that the frequency-domain solution g(f,R) is often a slowly 

varying function of frequency.   It is therefore possible to 

find the solution at a coarse frequency spacing, then 

interpolate it to the FFT frequency bins.  The interpolated 

unit-amplitude solution can be used in Eq. 2 to find the time-

domain solution.  If there are M bins in the coarse frequency 

spacing and N FFT bins, the computational savings will be 

on the order of N/M.  Convergence is checked by refining the 

frequency spacing (for example, using 2M points) and 

checking for changes in the predicted time series. 

Using this interpolation approach, the electrical field in 

the tissue was calculated for a series of needle locations of 

increasing depth, modeling the approach of the needle 

towards the nerve. 

C. Nerve geometry and nerve fibers 

For simulations shown here, the nerve was assumed to 

consist of 50 myelinated nerve fibers running parallel to the 

along-axis (x) dimension of the model.  While peripheral 

nerves typically contain hundreds of fibers, the number of 

fibers was limited in simulation to avoid increasing the 

computational load too greatly (time spent computing the 

nerve response greatly exceeded the time spent calculating 

the external fields).  The nerve fibers were randomly 

distributed inside a cylindrical nerve of 0.5 mm diameter.  

Fiber diameters were chosen randomly from a tri-modal 

distribution described by Boyd and Davy [9].  The effect of 

the nerve on the external electrical field was neglected. 

The response of each individual nerve fiber was described 

using the well-known Frankenhaeuser-Huxley, or F-H model 

[7].  The trans-membrane voltage at the nodes of Ranvier is 

expressed as a matrix equation [1]: 

( )emion
m
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∂
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where Vm are the transmembrane voltages and Ve are the 

external field values at each node.  The first term on the left 

represents capacitive currents across the membrane, while 

the second represents the summed ionic currents through ion 

channels.  These ionic currents have a complicated nonlinear 

behavior that is described by the F-H model.  The right side 

represents current flow from adjacent nodes, with G being a 

tridiagonal matrix representing the conductance between 

adjacent nodes.  

To reduce computational load, the number of active nodes 

(where the F-H equations are used to calculate iion) are 

limited to the 25 nodes centered on the current source.  The 

remaining nodes are described by passive cable equations.   

When the external field is applied to the nerve fiber, the 

Matlab differential equations solver ‘ode45’ is used to 

calculate the membrane voltages Vm.  Firing of the fiber is 

detected by checking whether at least five nodes of Ranvier 

have membrane voltages greater than 50 mV at any point in 

time (the resting voltage is approximately -70 mV).  

Requiring that multiple nodes are firing provides a means of 

checking that the action potential is propagating to nearby 

nodes.  Plots of the action showed that the signal was 

propagating away from the stimulus site, as expected. 

After the external field is calculated and the nerve model 

is assembled, the external field is interpolated to the (x,y,z) 

position of each fiber’s nodes of Ranvier.  A stimulus 

response curve is generated by sweeping the excitation 

current from zero to a maximum value. For each current 

value, the number of fibers that produce action potentials is 

noted.  Because this process is very computationally 

intensive, a coarse search is first done to find the current 

range of interest (i.e. from the current at which the first fiber 

fires to the current at which the last fiber fires).  Once a fiber 

has fired, it is assumed to be firing at all higher currents and 

its response is no longer checked. 

This procedure produces stimulus response curves in 

terms of the fraction of fibers firing.  Experimentally, the 

observed CMAP response / muscle twitch is generated when 

nerve fibers activate individual motor units.  The calculation 
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of CMAP waveforms from nerve fiber potentials is complex.  

At this point we make the naïve assumption that the 

measured response is linearly related to the fraction of fibers 

firing.  This can be justified as no CMAP response will be 

observed before the first nerve fibers begin to fire, and the 

maximal CMAP is found when all fibers are firing.  

However, this remains an area for further investigation.  

III. RESULTS 

A. Model Geometry 

An idealized model of a limb was developed using the 

COMSOL finite element code (COMSOL AB, Stockholm, 

Sweden) with post-processing done in Matlab (The 

Mathworks, Natick, MA).  The limb was modeled as a 

homogenous 20 cm long volume with elliptical cross-section 

(4 cm x 6 cm) as shown in Figure 4.  A needle electrode 

(modeled as a point source) is located inside the limb and 

injects a current.  A 1 cm x 2.1 cm surface electrode is held 

at ground and provides the return path for the current.  A 1 

mm thick skin layer surrounds the limb interior, which has 

the properties of skeletal muscle.  Tissue electrical properties 

are homogenous and frequency-dependent, and are from [8].   

 Boundary conditions are set so that no current flow is 

allowed through the skin-air interface.  At the ends of the 

limb (where the model is truncated), the boundaries are held 

at ground.  The point source was assumed to apply square 

pulses. The input waveform was sampled at 1 MHz, so the 

Nyquist frequency was 0.5 MHz.  This sampling rate was 

used to give an accurate reconstruction of the waveform.  

Response for 2.048 msec was calculated, giving 1024 

positive FFT bins. 

 

 
  

Figure 1:  Geometry used in finite element model. 

 

B. Predicted External Field 

Figure 2 shows predicted time series created using the 

iterative procedure outlined above, for the needle positions 3 

mm and 8.75 mm from the nerve.  A fine frequency sampling 

was made consisting of 30 points in frequency from 1 Hz -1 

MHz and was used to generate a first set of results; note that 

the charging/discharging behavior seen at the start and end of 

the pulse is due to tissue capacitance. The 30 frequencies 

were downsampled to 15 by discarding alternate points.  The 

30- and 15-frequency solutions are nearly identical, 

indicating that the solution has converged with 15 frequency 

points. Further reducing the number of frequencies to 7 leads 

to substantial errors. Based on this result, 15 frequency 

points are used for simulations presented below.   
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Figure 2.  Predicted response to a 0.5 ms pulse at distances 3 mm and 8.75 

from the nerve.  The interpolation approach is used with 30, 15, and 7 

frequencies logarithmically spaced from 1 Hz to 1 MHz.  The solution 

appears to converge as the frequency sampling is increased. 

 

C. Nerve Response 

Figure 3 shows computed stimulus-response curves for the 

overall nerve as a function of stimulus current and needle-to-

nerve distance (100 µs pulse width).   Some discretization is 

observed due to the limited number of fibers, but the general 

trends are clear.  A plateau is seen near 45% where all larger 

fibers are firing but smaller fibers are not yet firing.  Near the 

nerve, threshold currents decrease and the response becomes 

very sensitive to small changes in stimulus current. 
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Figure 3.  Predicted stimulus response curves (expressed as fraction of 

fibers firing) vs. needle-to-nerve distance and input current.   
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D. Use of model output in simulating nerve localization 

For predicting CMAP response, the stimulus-response 

curves shown in Figure 3 were smoothed and scaled to give a 

maximal response of 5 mV (assuming a linear relationship 

between CMAP response and the fraction of fibers firing).  

The CMAP response for any needle distance and stimulus 

current is then found by interpolating results from Figure 3.  

Figure 4 demonstrates a simple PNS scenario.  In this 

procedure the physician sets a target CMAP response of 0.25 

mV, which is intended to correspond to a visible muscle 

twitch.  A target current of 0.5 mA is also set.   
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Figure 4.  Example PNS procedure.  The modeled response is seen while as 

the needle approaches the nerve at 1 mm/sec from an initial distance of 10 

mm.  For lower currents, response indicates proximity to the nerve. 

 

In this example, the needle starts 10 mm away from the 

nerve and is advanced towards the nerve at a rate of 1 

mm/sec.  Response curves are shown for 1.5 and 0.5 mA 

stimuli.  A CMAP is evoked for the 1.5 mA current at 

roughly 2.5 mm from the nerve, while a response to the 0.5 

mA current is seen at roughly 1 mm from the nerve.  In 

common practice, physicians start with a higher current and 

manually adjust the current downwards [10].  Initial response 

to higher currents indicates the needle is approaching the 

nerve, while the ability to elicit a response at a low current 

suggests the needle is in close proximity to the nerve. 

IV. DISCUSSION 

Numerical results above show that the interpolation 

approach requires approximately 15 frequencies to be 

calculated in order for results to converge.  Run time is 

approximately 70 sec per frequency, so the use of 15 

frequency points is a substantial savings over the 1024 

frequency points required for a brute-force calculation. 

The stimulus-response curves from Figure 3 show that 

overall trends can be captured using a relatively small 

number of nerve fibers.   The effect of the multi-modal fiber 

diameter distribution can also be clearly seen, especially at 

longer distances where the smaller fibers are not well 

excited.  This highlights the importance of accurate fiber 

distribution models. 

Finally, while the FEM model allows for modeling of 

realistic anatomy, an idealized anatomy was used for this 

initial study.  Internal tissue structures such as fascial planes 

can have a noticeable impact on the efficacy of nerve 

localization and should be included in future work. 

V. CONCLUSION 

This paper describes a FEM modeling framework for 

accurately modeling peripheral nerve stimulation in regional 

anesthesia.  The FEM model extends previous PNS 

simulations by allowing realistic anatomy to be studied. 

Several enhancements to standard approaches were used for 

modeling the external field.  An interpolation approach was 

developed that allows the use of realistic frequency-

dependent tissue properties without large computational 

penalty.  Numerical results also demonstrated that the exact 

Helmholtz equation could be solved, rather than quasistatic 

approximations, without noticeable computational cost. The 

modeled external field was connected to a Frankenhaeuser-

Huxley model for nerve response and used to predict 

stimulus-response curves as a function of needle position.  

Finally, the use of the simulator was demonstrated for a 

simple nerve localization scenario.  The simulator provides a 

useful testbed for better understanding peripheral nerve 

localization. 
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