
  

  

Abstract— Generalized flash suppression (GFS, Wilke et al. 
2003) in which a salient visual stimulus can be rendered invisible 
despite continuous retinal input has provided a powerful means 
to study neural processes directly related to perception. 
However, the mechanisms underlying such perceptual 
suppression remain poorly understood. Here we asked how 
reliably the population responses could determine the 
perceptual states and what the roles of different areas in visual 
cortex played during suppression. Three monkeys were trained 
to perform the GFS task. Multi-channel neural activities in 
visual cortical areas V1, V2 and V4 were simultaneously 
recorded. Linear regression analysis on the time-frequency 
distributions of local field potential (LFP) recordings between 
two perceptual states (visible vs. invisible) showed that the 
significant power difference existed between the two perceptual 
states at the beta frequency band of 10-30 Hz. Linear 
discriminant analysis (LDA) classifiers were implemented to 
decipher perceptual states. Our results showed that LFP 
recordings provided significantly better prediction than the 
chance level, and the beta band signal provided better 
prediction than the broad band in all the three visual cortical 
areas.  Broad band signal provided more accurate prediction in 
V4 than in V2 and V1, while the beta band signal provided 
consistently good predictions in V1, V2 and V4. Furthermore, 
multi-channel recordings were more informative than single 
electrode recordings in V1, V2 and V4, while in V1 and V4 the 
benefit of decoding population activity was significant. 
Channel-wise correlations limited the benefits of population 
activity. These results indicated that considerable information 
was retained in the beta band of the local field potential. The 
benefits of population activity were explored and the different 
roles of different visual cortical areas during perceptual 
suppression were investigated. 

I. INTRODUCTION 
hile salient stimuli are physically presented for the 
duration of the experimental trial, they may be 

rendered subjectively invisible. Such perceptual suppression 
illustrates that our conscious perception is not simply a 
faithful representation of the external world, but is also 
affected by internal neural processes in the brain. Previous 
research suggests that stimulus conditions that disturb early 
feature representations may bring about visual invisibility 
(Macknik et al., 1998), and deficits in visual attention can 
induce invisibility too (Mack and Rock, 1998). Visual 
illusions provide a helpful means to dissociate the external 
world representation and internal brain processes, and thus, 
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have been studied to investigate the neural underpinnings of 
perception. However, the essential questions, such as how 
perceptual suppression arises from neural activities in 
different areas of visual cortex, still remain a matter of debate.  
 To address these questions, we first need to identify how 
the physical variables are encoded on which a perceptual 
decision is based. Many studies have been done to investigate 
whether it is possible to decode perceptual states and how 
reliably the perceptual state can be inferred (Haynes et al., 
2005a, 2005b, Mehring et al., 2003, Hung et al., 2005). LFP 
low frequency analysis showed perception-related 
modulations in primary visual cortex V1 (Gail et al., 2004), 
while recordings from V1, V2 and V4 showed correlations 
with perception suppression, particularly in V4 (Leopold et 
al., 1996).  Further study needs to be undertaken to clarify this 
discrepancy. 

In the present study, we examined neural recordings from 
behaving monkeys performing a GFS task (Wilke et al., 
2003), in which a salient monocular stimulus could be 
rendered subjectively invisible after a sudden presentation of 
random-moving dots appearing as a surrounding pattern. We 
explored the predictability of local field potential, 
investigated how well population activity could determine 
perceptual states, and investigated the roles of specific visual 
cortical areas, V1, V2 and V4 during subjective suppression.   

II. MATERIALS AND METHODS 

A. Materials 
We will describe the GFS experiment briefly since detailed 

description was given previously (Wilke et al., 2003, 2006). 
The GFS experimental paradigm of this study is outlined in 
Fig. 1. Briefly, after the stimulus indicated by a red disk was 
presented, small random-moving dots appeared as the 
surroundings. With the immediate appearance of the 
surroundings, the red disk can be rendered invisible. If the 
stimulus disappeared from perception, the monkey was 
trained to release a lever; otherwise, monkey was to hold the 
lever. Since here the stimulus to the corresponding two 
perceptual states ‘visible’ and ‘invisible’ is physically 
identical, the visibility is dissociated from the external world. 
The neural recordings were sorted according to monkey 
response and the corresponding perceptual state was labeled 
to indicate visibility. Large fractions of unambiguous catch 
trials were interleaved to ensure the accuracy of the monkey 
responses.  

Three adult Macaca mulatta monkeys participated in the 
experiment. While monkeys performed the task, neural 
activities were recorded by multiple microelectrodes which 
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were inserted into V1, V2 and V4 through the dura mater.  
Detailed information about the surgery and training was 
described (Wilke et al., 2006). Stimuli were displayed on two 
21-inch monitors through a mirror stereoscope. A small 
yellow spot (0.15˚) in the middle of screen served as a 
fixation spot and remained visible during trials. Stimulus size 
ranged between 0.6˚ to 3.2˚. Neural activities were recorded 
and local field potential was obtained after amplification and 
filtering between 1 and 500 Hz (Wilke et al., 2003). 

 

 
Figure 1. Experimental paradigm of GFS. Monocularly presented stimulus 
and dioptic surround condition. 

B. Methods 
Time-frequency analysis: Short-time Fourier transform 

(STFT) has been used to obtain the time-frequency 
distribution of a signal by representing the time resolution of 
the frequency spectrum. It is assumed that the signal is 
stationary within a short window in which the Fourier 
transform is performed. By sliding the window along time 
course, the signal can be represented in both time and 
frequency domain. We used a 32-point Hanning window that 
moved every 2 points along time-varying signal after LFP 
was down-sampled to 200 Hz. For a given channel, STFT was 
performed on individual trials, and then averaged across trials 
to obtain the time-frequency distribution. As a result, a set of 
time-frequency distributions were obtained over all of the 
channels. The procedure was separately done for each of the 
two perceptual states.  

Regression analysis: Linear regression is used for 
prediction by modeling and analysis of numerical data 
consisting of a dependent variable (also called response 
variable) and independent variables (also called predictors). 
The R2 value indicates the prediction ability of the model. The 
dependent variable y in regression equation 1 is modeled as a 
function of the independent variables X and error term ε  

y X β ε= +  

The parameters β   and ε  are to be determined by the 
least squares best fit of response variable y on the observed 
data, X. The method of least squares is a technique of fitting 
data and the best fit is reached when the sum of squared 
residuals has its least value.  

R2 is a measure of the global fit of the model. Specifically, 
R2 is one minus the ratio of the error sum of squares to the 
total sum of squares and the range is from 0 to 1. A R2 value 
close to 1 implies that the regression model provides perfect 
predictions while 0 indicates no linear relationship between 
the response and predictors. 

To apply linear regression, the predictors X were from the 
time-frequency distributions of multi-channel recordings, and 

y was to be set up by the labels of the corresponding true 
perceptual states 'visible' or 'invisible',  indicated by monkey 
behavioral responses. A linear regression model was then set 
up where R2 and p values for the model could be obtained to 
evaluate the prediction ability. Then, based on the 
time-frequency distribution of R2 or p values, the frequency 
band and time period associated with perceptual suppression 
was determined, which provided information for the 
following decoding analysis. 

Decoding: Two perceptual states, 'visible' and 'invisible', 
are analyzed, while the stimuli are identical. The predictive 
value of the neural signal is assessed by comparing the 
predicted perceptual states, which is inferred from neural 
activities, with the perceptual states labels indicated by 
monkey responses.  

We used the Fisher linear discriminant analysis (Duba et al., 
2000) to decode perceptual states due to its excellent 
performance, as well as its high efficiency. Since the stimuli 
are identical, the perceptual discrimination is separated from 
external world, and the classifier is applied upon neural 
activities to decipher perceptual states.  

Linear discriminant analysis requires the projection of data 
from n dimensions onto a line. Among the n-dimension 
samples X, n1 is in the subset D1, and n2 in the subset D2. Two 
subsets are obtained, since there are two perceptual states. We 
separate different patterns by finding the orientation in which 
the projected samples are well separated. This is done by 
maximizing the difference between the subset mean mi to be 
large relative to some measure of standard deviations as Eq .2 
indicates: 

 
 
Where  
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T denotes transposition. Thus, we obtained w for Fisher’s 

linear disciminant. The optimal decision boundary is given by 
the equation as below: 

0 0Tw x w+ =  
 Since in the present study, psychophysical testing 
determined approximately a 50% disappearance probability, 
the constant w0 is defined as: 

 0 1 20.5*( )T Tw w m w m= − +  
To avoid over-fitting, leave-one-out cross-validation will 

be applied. Data is divided into two subsets: one subset is 
used to train a LDA classifier and the other for testing the 
classifier. The testing subset contains one trial and the 
training subset contains the remaining trials. Classifiers are 
trained on the training subset and the obtained optimal 
decision criteria will be implemented on the test subset. The 
prediction result will then be obtained for this test subset. This 
procedure will be repeated so that all the trials are tested and 

1
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classified based on models learned from the other trials. The 
prediction results for all the trials can be taken together to 
give an averaged prediction result. 

Permutation approach: To test the influence of 
correlations among simultaneous recordings, we eliminate 
the correlations by a permutation approach. Considering two 
channels of recordings with many trials, randomly pairing 
data for channel 1 with data for channel 2 from a different 
trial leads to the channel-wise correlations to be removed. 

III. RESULTS 
Three monkeys were trained to perform the generalized 

flash suppression task (Fig. 1). During each session, neural 
activities of the monkeys were simultaneously recorded by 
multi-electrodes from V1, V2 and V4, using typically 4 to 7 
electrodes. The signal recorded from each electrode was 
processed to yield LFP recordings.  

A. Time-frequency distribution 
Since neural activities are variable in time and LFP signal 

covers a broad frequency range, our first step is to identify the 
time period of suppression and the relevant frequency bands 
which are directly associated with suppression. STFT was 
used to provide information about how the spectral content of 
the signal evolved with time, which explored a combined 
time-frequency representation of the signal. The distributions 
corresponding to the two perceptual states were obtained 
separately. Linear regression was applied to set up a linear 
model to investigate the difference between time-frequency 
distributions of the two states from all of the channels.  The R2 
values for the model in the three visual cortical areas V1, V2 
and V4 were shown with the same scale in Fig. 2 (Left). From 
Fig. 2, the main difference between the two perceptual states 
appeared in the beta frequency band of 10-30 Hz between 500 
ms and 800 ms time period after surround onset. The beta 
band signal stood out consistently in all the three visual 
cortical areas V1, V2 and V4, especially in V4.  High 
frequency band (>40Hz) conveyed some information about 
perceptual states too, especially in V1 and V2, although not 
so significant as the beta band. The power within the beta 
band signal of the two perceptual states was extracted and the 
time course of the ensemble activity of the two conditions 
was shown in Fig. 2 (right). The divergence between the two 
conditions ‘visible’ and ‘invisible’ after surrounding onset 
were visually quite obvious in V1, V2 and V4, particular in 
V4. 

B. Decoding 
As shown in Fig. 2, the time-frequency distribution of R2 

values indicated a time period and frequency band related to 
perceptual suppression. Thus, features in the time window, 
500 ms to 800 ms after surround onset and the frequency beta 
band were extracted to decipher perceptual states.  

LFP broad band signal and beta band signal allowed for the 
possibility of predicting suppression significantly greater than 
chance level (0.5) for all the three visual cortical areas V1, V2 
and V4 (Fig. 3) (p<0.05). LFP beta band signal yielded better 

 

 
Figure 2. Right: R2 distribution for V1, V2 and V4 in the same scale. White 
dash dot lines indicate stimulus onset (800 ms) and surround onset (2200 ms). 
Significance (p < 0.05) was shaded in red. Left: Ensemble activity of beta 
band for 'visible' (green) and 'invisible' (blue) for V1, V2 and V4. Two 
vertical black lines indicate stimulus onset and surrounding onset. The red 
lines indicate the peak after surrounding onset. 
 
 

 
Figure 3. Prediction accuracy of broad band vs. beta band from single 

electrode recordings and multi-electrode recordings in V1, V2 and V4. Gray 
line indicates chance level 0.5.  

 
prediction in V1, V2 and V4, while in V1 the different 
performance from broad band signal was significant.  The 
results revealed that LFP recordings contained information 
associated with perceptual suppression, and the beta band 
signal was more informative, especially in V1. Furthermore, 
more accurate prediction was observed in V4 than in V2 and 
V1 for broad band signal (p<0.05), indicating that V4 was 
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more involved in suppression. 
On the basis of simultaneous multi-channel LFP recordings,  

it can be said that neural activities from multiple channels 
yielded more accurate prediction in V1, V2 and V4, while in 
V1 and V4, the improvement was significant (p<0.05). LFP 
multi-channel analysis allowed for >80% accuracy in 
prediction of suppression in V4. 

C. Correlation effect 
Correlation among multiple channels of simultaneously 

recorded LFP can be relatively high.  To test the influence of 
correlations, we compared prediction accuracy of 
simultaneously recorded LFP beta band to that obtained by a 
permutation approach, which shuffled trial order (correlation 
absent). The effect of correlations was shown in Fig. 4 where 
the two curves diverged as the number of channels increased. 
The results suggested that channel-wise correlations limited 
the benefits of averaging across populations, thus decreased 
the accuracy of perceptual discrimination.       

 
Figure 4. Prediction accuracy of simultaneously recorded (blue) and 

shuffled (green) beta band signal in the function of number of electrodes in 
V4. Error bar: standard error. 

IV. DISCUSSION 
The aim of this study is to investigate how accurate 

perceptual states can be inferred from neural activities. 
Low-to-medium frequency LFP data showed 
perception-related modulations in V1 (Gail et al., 2004), 
while in V4 it showed strong modulations in the firing rate 
during perceptual suppression (Leopold et al., 1996). 
Furthermore, consistent and sustained modulation of V1, V2 
and V4 occurred at lower frequency bands (Wilke et al., 
2006).  In the present study, we demonstrated that the beta 
band signal was more related to perceptual suppression. LFP 
broad band signal in V4 provided more accurate prediction 
than in V2 and V1, while the beta band provides comparably 
good prediction in V1, V2 and V4. Broad band prediction 
results indicated that V4 may be more involved in perceptual 
suppression, while beta band signal conveyed sufficient 
information related to perceptual suppression even in early 
visual cortical areas.  Additionally, high frequency band 
signal also carried information related to perceptual 
suppression, especially in V1 and V2. LFP recordings, 
whether broad band, beta band or gamma band, all provided a 
more accurate prediction than the chance level. This indicated 

that LFP recordings carried some information associated with 
perceptual suppression. Meanwhile, different prediction 
performance was observed with different bands signal in the 
cortex. The different prediction performance between broad 
band and beta band signal among V1, V2 and V4 shed light 
on the debate whether different visual cortical areas were 
involved in vision. 

 Furthermore, the multi-channel recordings can be used to 
predict perceptual states with higher accuracy than single 
electrode recordings. The improvement observed in 
multi-channel recordings indicated that neural activities from 
different electrodes may carry complementary information 
about perceptual states and a number of neurons may jointly 
contribute to the perceptual decision. Here significantly better 
prediction was observed in V1 and V4. In V2, fewer 
electrodes were implanted and this may explain that benefit 
from population activity in V2 is not as obvious as that gained 
in V1 and V4.  The effect of channel-wise correlations was 
examined with simultaneous multi-electrode recordings and 
the results revealed that the channel-wise correlations limited 
the benefit of population activity and thus decreased 
prediction performance. The results suggested that the 
commonly used surrogate for the true information in the 
population (Hung et al., 2005) should be revised upon 
recording simultaneously from many neurons. Further studies 
are necessary to explore the population coding. 
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