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Abstract—Stochastic resonance (SR) has been shown to
improve detection of sub-threshold signals with additive uncor-
related background noise, not only in a single hippocampal CA1
neuron model, but in a population of hippocampal CA1 neu-
ron models (Array-Enhanced Stochastic Resonance ; AESR).
However, most of the information in the CNS is transmitted
through supra-threshold signals and the effect of stochastic
resonance in neurons on these signals is unknown. Therefore,
we investigate through computer simulations whether infor-
mation transmission of supra-threshold input signal can be
improved by uncorrelated noise in a population of hippocampal
CA1 neuron models by supra-threshold stochastic resonance
(SSR). The mutual information was estimated as an index of
information transmission via total and noise entropies from
the inter-spike interval (ISI) histograms of the spike trains
generated by gathering each of spike trains in a population
of hippocampal CA1 neuron models at N=1, 2, 4, 10, 20 and
50. It was shown that the mutual information was maximized at
a specific amplitude of uncorrelated noise, i.e., a typical curve
of SR was observed when the number of neurons was greater
than 10 with SSR. However, SSR did not affect the information
transfer with a small number of neurons. In conclusion, SSR
may play an important role in processing information such as
memory formation in a population of hippocampal neurons.
Index Terms—Action Potential, Supra-threshold Stochastic

Resonance, Hodgkin-Huxley model, Homogeneous Poisson Pro-
cess, Synaptic Noise, Information-Theoretic Analysis, Numeri-
cal Method, Monte Carlo Simulation

I. INTRODUCTION
Stochastic resonance (SR) is a phenomenon described

as an increase in detection of sub-threshold signal gene-
rated by uncorrelated noise added to the input signal of
a single non linear element. This phenomenon has been
described originally in a bistable system[1], later observed
in the sensory nervous system[2], [3], [4], and the central
nervous system[6],[7], [8]. SR in an array of elements
is known as array-enhanced SR (AESR), and depends on
added noise as well as coupling between each element [8].
Further investigations have shown that uncorrelated noise can
enhance information transmission of supra-threshold input
signal with supra-threshold stochastic resonance (SSR) not
only in a population of static non-linear systems possessing
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multilevel threshold values [15],[16], but also in a population
of dynamical non-linear systems with single level threshold
values, like an array of neurons [17],[18]. However, it is
yet unclear if and how uncorrelated noise can enhance
information transmission of supra-threshold signals in neural
networks in the central nervous systems.

In the present article, we test the hypothesis through
computer simulations that information transmission of supra-
threshold input signal can be improved by uncorrelated noise
in a population of hippocampal CA1 neuron models with
SSR. In computer simulations, the amplitude of uncorrelated
noise was varied and the spike trains was reconstructed by
spike firing times from each of the transmembrane poten-
tials recorded at the soma in order to evaluate information
transmission, i.e., the mutual information estimated from the
total and noise entropies of the inter-spike interval histogram
(ISIH) of the spike trains.

II. METHODS
A population of hippocampal CA1 neurons represented

by a multi-compartment model [14] and previously obtained
[6] was implemented as shown in figure 1. Each neuron
model had 5 cylinders representing the dendritic tree : 5
compartments in the basal tree, one compartment in the
soma, and 20 compartments in the apical branches. The
soma at each neuron contained a sodium, a calcium, and
five potassium channels in which conductances and transition
rates were adapted from those in [13]. The transmembrane
potentials for each neuron were numerically calculated by
solving a diffusive partial differential equation with the
Crank-Nicholson method at a sampling step of 20 µs.

In the computer simulation, the signal, Isignal(t), was ap-
plied simultaneously and the noise, I [k]noise(t), was independent
of all other stimuli (figure 1b).

The synaptic stimulating currents defined to be Isignal(t) as
signal and I[k]noise(t) as noise were modeled by a homogeneous
Poisson process filtered as follows :

I(t) =

∫ t

−∞
h(τ)dN(t− τ) (1)

where the impulse response function is described as :

h(t) = ae−αt (t ≥ 0) (2)

where α = 1000 1/s in all the stimulus. In the signal source,
Isignal(t), the intensity, λS, of the counting process Nsignal(t)
was set at 5 1/s, the amplitude, asignal = 3.0 nA. This
signal was applied to all neuron models simultaneously at
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Fig. 1. (a) An hippocampal CA1 neuron was represented as a 5 cylinder
multi-compartment model possessing 26 compartments. The equivalent
electric circuit was shown in which the dendrites were composed of the
passive resistances and capacitance, and in which the soma has the activation
channels. (b) A population of hippocampal CA1 neuron models (N neurons).
The supra-threshold synaptic current, Isignal(t), was presented at the distal
position of the apical dendrite (the 24th compartment) and the uncorrelated
noise, I[k]noise(t), was applied to the middle position of the basal dendrite
(the 3rd compartment). The transmembrane potentials were recorded at each
soma (6th compartment) to detect spike timings, and to generate a binary
sequence of spike timings (“1” or “0”) in each neuron. Then, the binary
sequence in each neuron was summed up to evaluate how much information
carries on the CA1 neuron network.

the distal position (24th compartment). The noise, I [k]noise(t)
was also modeled by a homogeneous Poisson process where
the intensity, λN , was set at 100 1/s and the amplitude, anoise
was varied to analyze the effect of the noise on spike firing
time. In the computer simulation, the noise current I [k]noise(t)
was applied to the middle in the basal tree in the kth neuron
(see figure 1b).

The spike firing times of the individual neurons were
detected by determining at which time the transmembrane
potential at the soma, V [k]

soma(t), reached the peak amplitude
and was greater than 50 mV . The population of neural spikes
was defined as the binary data which was generated by
summing up the spiking sequence of all neurons in the
array, estimated by the mutual information of the inter-spike
intervals (ISIs).

The inter-spike interval histogram (ISIH) was generated
from spike firing times with an optimal bin width [12] :

bw= 3.49×σISI×N
−1/3
ISI (3)

where σISI and NISI are the standard deviation and the
number of the ISI data respectively. This expression is
optimal for Gaussian distributed ISI.

Then, from ISI histograms the mutual information bits
was calculated, assuming that the ISIs were independent, i.e.,
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Fig. 2. Stimulating currents and recorded transmembrane potentials
in a single neuron. Top : Input synaptic current, Isignal(t), generated
by a homogeneous Poisson shot noise with an intensity of 5 Hz
and asignal=3.0 nA, Middle : Background noise uncorrelated to
the signal, Inoise(t), also generated by homogeneous Poisson shot
noise with an intensity of 100 Hz and a variable amplitude (anoise),
Bottom : Transmembrane potentials recorded at the soma, Vsoma(t)
relative to the resting potential Erest = −66mV . The amplitude of
noise, anoise, was set at 0 nA in (a), 0.15 nA in (b), and 0.25 nA in
(c).

renewal point process, as follows [9], [10], [11] :

Imutual(Isignal(t),T ) = Htotal(T )−Hnoise(T |Isignal(t)) (4)

Htotal(T ) =−
∞

∑
i=0
p(Ti)log2p(Ti) (5)

Hnoise(T |Isignal(t)) =

−E[
∞

∑
i=0
p(Ti|Isignal(t))log2p(Ti|Isignal(t))] (6)

in which T and R respectively stand for the ISIs, and the
spike firing rate, and E[] denotes the expectation operation.

All computer simulations were performed on an IBM
compatible PC with a Pentium 4 CPU.
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Fig. 3. Signals recorded in an array of 50 neurons. Top : Input
synaptic current, Isignal(t), applied simultaneously to 50 neurons,
Middle : Raster plots in which the dot indicates the action potential,
Bottom : Binary sequence for evaluation. The noise amplitude,
anoise was set at 0 nA in (a), 0.1 nA in (b), and 0.25 nA in (c).

III. RESULTS

The analysis was first applied to a neural network consis-
ting of a single cell. Figure 2 shows the input signal current,
Isignal(t) (top), the background uncorrelated noise, Inoise(t)
(middle), and the transmembrane potentials (bottom) at the
soma in one neuron. The noise source, amplitude of anoise
was set to 0 nA in (a), 0.15 nA in (b) and 0.25 nA in (c). The
noise induced spike activity increased with increasing noise
amplitude (a-c). The action potentials in the neurons follow
the input indicating that the signal is indeed supra-threshold.
At high noise levels, additional action potentials are induced.

Similar experiments in an array of 50 neurons were then
carried to analyze the effect of SSR in neural networks.
Figure 3 shows the input signal current, Isignal(t) (top), the
raster plots of 50 neurons (middle) and the binary data
(bottom) of the neural spike trains gathered (See Figure 1
(b)). The amplitude anoise was varied as 0 nA in (a), 0.1 nA
in (b) and 0.25 nA in (c). Although this result and figure
2 show similar trends, the population of 50 neurons (the
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Fig. 4. The inter-spike interval histograms (ISIHs) generated by
100 trials of the simulation of 30s. These ISIHs were from spiking
activities of 1 neuron. Noise intensity was varied to be 0 nA in (a),
0.1 nA in (b), 0.25 nA in (c). ¿From the fi gure, the total entropy
was calculated that is needed to estimate the mutual information.

raster plot) displays an additional property : variability at
the spiking time along the input signal with the moderate
level of noise amplitude (see figure 3b). The spike timing
was estimated by the binary sequence.

The experiment similar to that has been shown in figure 2
but the duration was extended to 30 s and repeated 100 trials
was performed. It was needed to quantify the information
content of population statistically. Figure 4 shows the inter-
spike interval histograms (ISIHs). These ISIHs were obtained
from the simulation of 1 neuron. The amplitude of noise,
anoise was set at 0 nA in (a), 0.1 nA in (b) and 0.25 nA
in (c). The probability, p(T ) is shown and gives the total
entropy. Thus, the mutual information was estimated to be
0.2442 bits in (a), 0.2390 bits in (b) and 0.0547 bits in (c).

The mutual information is plotted as a function of the
noise amplitude in figure 5. The mutual information reached
a maximum value for the specific amplitude of noise in larger
number of neurons (10, 20 and 50 neurons), while networks
of smaller size do not display any SSR effect. The results

6808



0.1 0.2 0.3
0

1

2

3

4

5

6

7

8

Noise Amplitude

M
ut

ua
l I

nf
or

m
at

io
n 

[b
its

]

 1 cell
 2 cells
 4 cells
10 cells
20 cells
50 cells

Fig. 5. Effect of the number of neurons on the mutual information.
Mutual information reached a maximum value at specifi c noise level
for arrays with 10, 20 and 50 neurons, whereas noise decreases the
mutual information in the case of 1, 2 and 4 neurons.

indicate that the maximum mutual information increased
when the number of neurons was increased, suggesting that
the number of neurons plays an important role in information
processing of the central nervous systems.

IV. DISCUSSION AND CONCLUSION

The role of noise in signal processing has already been
shown to be important to neuronal function. Previous studies
have focused on sub-threshold signals but information in
the brain can also be supra-threshold. Therefore an analysis
of the role of noise in supra-threshold information transfer
is crucial to the determination of the effect of noise in
neural networks. The results of this study, have shown that
uncorrelated noise can synergistically increase information
transmission of supra-threshold input signal in a network of
neuron suggesting a mechanism different that the one used
to explain sub-threshold stochastic resonance.

Without noise, the firing time of each neuron with supra-
threshold signals is the same since the system is determinis-
tic. Therefore, since single element fires spikes at the same
time, there is no additional information contained even when
the number of elements increases, i.e., greater redundancy.
When noise is added optimally to each of element, each
neuron becomes more independent from its neighbor, and
therefore noise randomizes the spike firing times, reducing
redundancy or increasing information content. This is be-
cause optimally added noise can generate fluctuations of
membrane potentials, transition rates of sodium channels,
and threshold values in individual neurons. At high noise
amplitude the noise induces random spiking activity and de-
creases information content. Therefore, mutual information
is observed to reach a maximum value with increasing noise
amplitude suggesting the presence of SSR[17].

The effect is observed to improve with larger neuronal
networks. Since hippocampal neurons receive large numbers
of inputs and are made up of large number of neurons. SSR
could play an important role as an amplifier of the the mutual
information transfer across the hippocampus.
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