
  

  

Abstract—Whole-room indirect calorimeters are capable of 
measuring human metabolic rate in conditions representative 
of quasi-free-living state through measurement of oxygen 
consumption (VO2) and carbon dioxide production (VCO2). 
However, the relatively large room size required for patient 
comfort creates low signal-to-noise ratio for the VO2 and VCO2 
signals. We proposed a wavelet-based approach to efficiently 
remove noise while retaining important dynamic changes in the 
VO2 and VCO2. We used correlated noise modeled from gas-
infusion experiments superimposed on theoretical VO2 
sequences to test the accuracy of a wavelet based processing 
method.  The wavelet filtering is demonstrated to improve the 
accuracy and sensitivity of minute-to-minute changes in VO2, 
while maintaining stability during steady-state periods. The 
wavelet method is shown to have a lower mean absolute error 
and reduced total error when compared to standard methods 
of processing calorimeter signals. 

I. INTRODUCTION 
NDIRECT calorimetry is the current gold standard for 
assessing minute-to-minute changes in human metabolic 

rate. This process relies on the measurement of a subject’s 
oxygen consumption (VO2) and carbon dioxide production 
(VCO2) to compute his/her energy expenditure (EE) from 
the standard equation [1;12]: EE (kcal/min) = 3.941VO2 + 
1.106VCO2.  Whole-room indirect calorimeters (metabolic 
chambers) measure human EE by continually measuring the 
changing composition of the air contained in a respiratory 
chamber with limited, tightly controlled air inflow and 
outflow. These devices are useful for measuring a wide 
range of metabolic states and the large room size increases 
patient comfort, permitting longer studies (up to several 
days).   

However, the accurate measurement of “near free-living” 
human metabolism using the metabolic chamber is not 
without its challenges.  For instance, the size of a typical 
metabolic chamber (15,000-30,000 L) is large when 
compared to the amount of O2 consumed by an average 
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individual at rest (0.2-0.4 L/min). Electromagnetic noise 
from other devices also corrupts the electronic output of the 
gas analyzers used to measure room O2 and CO2 
composition.  For these reasons, the response time and 
accuracy of the whole-room system is reduced, making it 
difficult to study rapid changes in EE caused by activity, 
pharmacology, or diet [11]. Consequently, it is necessary to 
implement some form of software-based algorithm to 
suppress noise associated with EE measurement using 
whole-room calorimeters.  

Precise calculation of the rate of O2 depletion and CO2 
accumulation in the room air composition has the most 
substantial influence on the accuracy of EE measurement in 
whole-room calorimetery [11]. This requires estimating the 
derivative of the measured room air concentrations of O2 
and CO2 over time. What in theory appears to be a simple 
calculation, in practice has two major obstacles: (1) The rate 
of gas accumulation/depletion changes each time the subject 
changes metabolic state (e.g. from sitting to standing and 
then walking) and (2) The derivative calculation is made 
much more difficult when measurement of the O2 and CO2 
concentration is corrupted by noise. 

 To overcome these challenges, we propose a wavelet-
based approach to efficiently remove noise while retaining 
important dynamic changes in VO2 and VCO2. We have 
used correlated (colored) noise modeled from real gas-
infusion experiments in an indirect calorimeter 
superimposed on theoretical VO2 sequences with both 
dynamic and steady-state periods to test the accuracy of a 
wavelet based processing method.  The wavelet filtering is 
demonstrated to improve the accuracy and sensitivity of 
minute-to-minute changes in VO2, while maintaining 
stability during steady-state periods. The wavelet method is 
shown to have a lower mean absolute error and reduced total 
error when compared to standard methods of processing 
calorimeter VO2 signals.  

II. EXPERIMENTAL PROCEDURE 

A. Calorimeter Design 
The experimental portion of this project was carried out in 

the three newly-constructed metabolic chambers housed in 
the National Institutes of Health (NIH) Metabolic Clinical 
Research Unit in Bethesda, MD. Each chamber consists of 
an 11.5’ x 11’ x 8’ air-tight room enclosed with aluminum 
faced doors surround by an isolated U-shaped corridor 
(buffer region) that serves as fresh air plenum. Air is 
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actively pulled out of the chamber from equidistant points 
around the room at a constant flow rate (~60 LPM) 
maintained by a voltage-controlled blower (Ametek, 
Windjammer). The air drawn from the chamber is then 
passively replaced by fresh air from the positive pressure 
buffer region which enters through a small 2 inch opening, , 
thus creating an open-circuit system. The chamber is 
otherwise sealed and isolated from the outer environment. 
The precise outflow rate is measured by a mass flowmeter 
(Teledyne-Hastings, Inc) and digitally recorded for further 
calculations. A small quantity of air (1 LPM) is drawn 
separately from both the effluent chamber air stream and the 
buffer region air supply. Both samples are continuously 
passed through a condenser (ABB SCC-C and F series 
cooler and feed unit) which cools the air to 1oC and 
eliminates water vapor moisture before pumping them at a 
constant pressure to the differential CO2 (ABB AO2000 
near-infrared CO2 analyzer, range 0-1 %) and O2 (Siemens 
Oxymat 6E Paramagnetic O2 analyzer, range 20-21%) 
analyzers, which measure the respective gas concentrations 
to within 0.001%. Each chamber is equipped with a separate 
air-handling unit to ensure a stable internal temperature (± 
0.2oC), relative humidity (30-50%), and thorough mixing of 
the air. A GE Optica unit was responsible for measuring the 
temperature (0.1oC), humidity (0.1%), and barometric 
pressure (0.1mmHg) inside the chamber once each minute. 

B. Calculation of VO2 
Oxygen consumption (VO2) and carbon dioxide 

production (VCO2) in a metabolic chamber can be modeled 
using first order differential equations, the derivations of 
which are shown in detail elsewhere [7]. Since the 
measurement of O2 has a higher noise level than CO2 [11] 
most likely due to differences in the measurement mode of 
the two analyzers (paramagnetic versus near-infrared), we 
have elected to present data related to VO2 only, but the 
process of computing the VCO2 is identical. The VO2 was 
computed using the following equation: 
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where F is the outflow rate and VC is the air volume of the 
chamber, both corrected for standard temperature, pressure, 
and dry (STPD) conditions. H is commonly referred to as 
the “Haldane correction”. The concentrations of O2 and CO2 
in the inlet air ( i

Of
2

 and i
COf

2
) are assumed to be constant at 

20.930% and 0.03%. The concentration of O2 and CO2 in 
the outlet air ( o

Of
2

 and o
COf

2
) are measured by the respective 

analyzer.  

C. Simulated Signals 
Gas infusion tests were performed to identify the steady-

state noise characteristics of the metabolic chamber. Dried, 
compressed gas from one bottle of N2 (UHP Grade, 99.99% 
pure, Roberts Oxygen Inc) and one bottle of CO2 (SFC 
Grade, 99.9% pure, Matheson Tri-Gas Inc) was 
simultaneously infused into the three metabolic chambers at 
a constant, controlled rate for three hours. The rate of 
infusion of each gas into each chamber was controlled using 
separate thermal mass flow controllers (MKS Instruments, 
1179a) connected to a mass flow programmer (MKS 
Instruments, 647C). During the infusion, the voltage output 
of the O2 and CO2 analyzers was digitized (National 
Instruments,  NI9215) and recorded at 120 samples/sec 
using a Labview program, yielding o

Of
2

 and o
COf

2
 signals. 

The o
Of

2
 and o

COf
2
 were resampled posthoc at 1 sample/sec. 

This process was repeated in the three chambers on five 
consecutive days, with constant flow rates ranging from 
0.149 - 0.265 LPM for CO2 and 0.74 - 1.32 LPM for N2. 

Once all gas infusion data was collected, the o
Of

2
 and 

o
COf

2
 collected from each chamber during each day (N = 15 

total) were detrended by subtracting off the best-fit quadratic 
polynomial. This resulted in an error sequence. Since the 
length of the error sequence was generally too short for an 
appropriate simulation (3 hours), an autoregressive (AR) 
model was created using the Burg method [10]. The order of 
the model was determined using the Akaike’s Final 
Prediction Error [10]. The model coefficients were then used 
to filter randomly generated white noise to yield a sequence 
of colored noise (n) used during the simulation. The 
variance of the simulated colored noise sequence was set to 
the variance of the error sequence to provide a realistic 
signal-to-noise ratio.  

To generate an appropriate set of test data, separate 
theoretical sequences for oxygen consumption and CO2 
production ( TVO 2  and TVCO 2 ) were created for each of the 
15 sequences. Each TVO 2  and TVCO 2  sequence was 
approximately 24 hours long and incorporated rates that 
corresponded to various metabolic states, including rest, 
exercise, and post-meal response. The sequences also 
contained 1 and 2 minute impulse increases in VO2 and 
VCO2, to test the sensitivity of each method. The theoretical 
O2 concentration sequence, T

Of
2

, was then back computed 

from the ideal TVO 2  and TVCO 2  sequences by inverting Eq. 
(1) and letting ( ) [ ] [ ]1
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In Eq. (3), Δt is the time between steps k-1 and k, in 
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minutes. The noise sequences are then added to the 
theoretical T

Of
2

sequences and the resultant noisy simulated 

signals, n
Of

2
, are used to test the following processing 

algorithms. 
 

nff T
O

n
O +=

22
                   (4) 

D. Standard Processing Methods 
Several methods have been implemented to compute the 

rate of change in the O2 concentration, ( ) dtfd o
O2

, during 

noisy measurement conditions. The two most widely used 
are the Henning algorithm [3;8] and the central difference 
method [7;11]. 

The Henning algorithm finds the piecewise fit of two 
exponential functions in each 30 minute sliding window of 

n
Of

2
 data which minimize the squared error. The fits take on 

the form: 
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where bpt is the breakpoint between the first and second 
exponential fit. The derivative of the fits can then be used to 
compute the VO2. 

The central difference method (CDM) is a discrete time 
derivative that follows the form presented by Sun, et. al. 
[11]. 
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In this case, a 3 minute central difference was used; 

meaning the n
Of

2
 value of minute 1 was subtracted from the 

n
Of

2
 of minute 3, yielding  ( ) dtfd n

O2
 of minute 2. 

E. Wavelet Correction of Central Difference Method 
The main obstacle in calculating VO2 during indirect 

calorimetry is the low signal-to-noise ratios in the gas 
concentrations, particularly for O2, which can be 
exacerbated during calculation of their derivative over time 
(see central difference method in Fig. 1). To algorithmically 
reduce the amount of system (colored) noise corrupting 

( ) dtfd n
O2

, we chose to use a mathematical technique 

known as wavelet de-noising [2;4;5]. In wavelet de-noising, 
the noisy derivative sequence is mathematically decomposed 
into several frequency sub-bands using a series of filters 
whose structures are dependent on the choice of an initial 
“Mother Wavelet”. A unique, pre-determined mathematical 
threshold is applied to each frequency sub-band in order to 

suppress the noise (underneath the threshold) and retain 
important details (above the threshold) specific to each 
frequency range. It is important to note that the thresholds 

for each frequency range are not fixed, but rather they are 
flexible and based on the statistical characterization of the 
system noise. The derivative sequence can then be 
reconstructed with the thresholded sub-band information. 
The advantage of the wavelet de-noising technique is that 
unwanted noise is suppressed while important information is 
retained with limited smoothing of detail [6]. This quality is 
essential to detect dynamic changes in VO2 while reducing 
system noise. 

For the problem presented here, we applied the wavelet 
de-noising technique to the derivative calculated using the 
central difference method (Fig. 1). A stationary wavelet 
transform [9] with a Haar Wavelet [5] was used to 
decompose the ( ) dtfd n

O2
 into the three frequency sub-

bands. The universal threshold rule for colored noise [4] was 
used (Eq. 7). 
 

( )NT ejj log2σ=                    (7) 

 
Here N is the number of discrete samples in the signal 

being decomposed. The term σj is a robust estimate of the 
noise-level in each wavelet frequency sub-band (j), which is 
computed as the median absolute deviation from the mean 
divided by 0.6745 [4].  

F. Analysis of Performance 
All three methods were used to compute the VO2 in 15 of 

the noisy different n
Of

2
signals. The resultant VO2 from each 

method was compared to the respective theoretical TVO 2  
sequence. The mean absolute error (MAE) was used to 
quantify minute-to-minute errors in the VO2 calculations and 
total daily error was used to assess the long term 
performance of each method. Total daily error was defined 
as the sum of all the minute-to-minute differences between 
the theoretical TVO 2  sequence and the calculated VO2 

Fig. 1.  The derivative of a simulated room O2 concentration, 
d(fO2)/dt, corrupted by colored noise. The Central Difference method 
of calculating the d(fO2)/dt (red line) captures sharp changes, but 
contains significant noise during the steady-state period (>150 min). 
Applying the wavelet transform to the central difference (green line) 
reduces the noise while retaining sharp features.  
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sequence.  

III. RESULTS 
Representative results from the three VO2 processing 

methods are demonstrated in Fig. 2. The Henning method 
(Fig. 2, top row) appears to follow the theoretical VO2 
during steady-state periods >30 minutes. However, during 
short impulses of 1 to 2 minutes (left column), and longer 
pulses of 10 – 30 minutes (right column) the Henning 
method oversmoothes the data, and thus yields inaccurate 
results on a minute-to-minute basis. In contrast, the VO2 
computed using the Central Difference Method (CDM, Fig. 
2, middle row) captures short term changes in the theoretical 
VO2, but is noisy during the steady-state periods >30 
minutes. When the wavelet transform is applied to the 
central difference (Fig. 2, bottom row), the detailed short-
term changes are retained, but the steady-state noise is 
smoothed, yielding a computed VO2 which is closer to the 
theoretical VO2.     
 The quantitative results from the 24-hour simulation 
experiments (N=15) is displayed in Table 1. The mean 

 
Fig. 2.  Methods of calculating VO2 from noisy fO2 data. The Henning Method (blue line, top row), Central Difference Method (CDM, red line, 
middle row), and Central Difference Method with Wavelet De-noising (green line, bottom row) were tested with various theoretical VO2 
sequences, such as short (1 and 2 minute) pulses (left column) and longer (10-30 minute) pulses (right column).   

TABLE  I 
24-HOUR SIMULATION RESULTS (N=15) 

Method MAE in VO2 (LPM) Total Error in VO2 (L/day) 

Henning 

 

0.066 ± 0.005 
(0.057, 0.075) 

 

3.605 ± 1.8502 
(-0.415, 6.112)  

CDM 

 

0.058 ± 0.015 
(0.037, 0.082) 

 

0.061 ± 0.244 
(-0.314, 0.588) 

CDM + 
Wavelet 

 

0.021 ± 0.0061 
(0.010, 0.029) 

 

0.075 ± 0.144 
(-0.187, 0.379) 

Values reported in Mean ± SD (Min, Max)  
1significantly lower than both Central Difference and Henning 
2significantly larger than both Wavelet and Central Difference Methods 
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absolute error for the wavelet method of computing VO2 
(0.021 ± 0.006 LPM) was significantly lower (p<0.001) than 
both the Henning VO2 (0.066 ± 0.005 LPM) and the CDM 
VO2 (0.058 ± 0.015 LPM).  This suggests that the wavelet 
denoising improved the minute-to-minute calculation of 
VO2.  The total daily error was highest for the Henning 
Method (3.605 ± 1.850 L/day, p<0.001 compared to the 
other two methods). The Wavelet method increased the total 
daily error from the CDM, but the increase was not 
significant (0.061 ± 0.244 vs. 0.075 ± 0.144 L/day, p=0.85). 

IV. CONCLUSIONS 
We investigated the performance of three processing 

methods on simulated 24-hour VO2 signals with a wide 
range of dynamic and steady-state metabolic activities 
corrupted by additive, correlated noise modeled from gas 
infusion experiments. The Henning Method, which 
determines the two best fit exponential equations to each 30 
minute sliding window of n

Of
2

data, appeared to work well 

on steady-state  (>30 min) VO2 periods (Fig. 2), which were 
incorporated to simulate changes to basal energy 
expenditure, exercise bouts longer than 30 minutes, and 
post-meal responses. However, the minute-to-minute 
performance of the Henning Method during durations of 10 
– 30 min. (Fig. 2, top row, right col.), meant to simulate 
physical activity of daily living, and short impulses (1 – 2 
min., Fig. 2, top row, left col.) was poor. Overall, this 
method had the largest MAE and under-predicted the daily 
VO2 by an average of 3.6 L/day. On the other hand, the 
Central Difference Method (CDM) was able to identify very 
sharp changes in VO2 over time, but did not demonstrate 
stability during steady-state periods (Fig. 2, middle row). 
When Wavelet De-noising was applied to the Central 
Difference Method, the wavelet processing appeared to 
balance features of the other two methods, by demonstrating 
similar steady-state stability and retaining the detail during 
both the long and short pulse sequences (Fig 2, bottom row). 
The combination of CDM and wavelet-de-noising 
demonstrated an MAE which was nearly 1/3 of both the 
other two methods without a significant increase in the total 
daily error. 

In conclusion, wavelet-based noise removal appears to 
improve the accuracy of calculated VO2 values during 
simulation. Further testing is required to optimize the 
process for real-time calculations.  
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