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Abstract— Recently, information technology and microelec-
tronics have enabled implanting miniature and highly intelligent
devices within the brain for in-vitro diagnostic and therapeutic
functions. Power and physical size constraints of these devices
necessitate novel signal processing methods. In this paper we
investigate an effective data acquisition and reconstruction
method for brain implants based on Asynchronous Sigma
Delta Modulators (ASDMs). The ASDMs are analog non-linear
feedback systems capable of time coding signals. The proposed
reconstruction algorithm is based on the Prolate Spheroidal
Wave Function (PSWF) expansion of the sinc functions and the
order of expansion is given by the input signal being coded.
Multiplexing and transmission of the different channels of data
are accomplished by chirp orthogonal frequency division mul-
tiplexing. Computer simulations using multi channel electroen-
cephalographic data are performed for wireless transmission
by brain implants for monitoring abnormal brain activities of
epilepsy patients.

I. INTRODUCTION

Currently, medical implants are being developed for a

variety of clinical applications. For instance, in the case of

focal epilepsy prior to surgical intervention the localization

of epileptogenic tissues is needed. As a dynamic system,

the brain produces complex cellular activities which involve

some latencies in time. Due to a kindling period before the

full development of an epileptic seizure [1], the initial ictal

activity appears to spread from the epileptogenic zone to the

other regions of the brain during a transition period until the

seizure is fully developed rather than starting instantaneously

in all affected areas. Therefore, by detecting the time at

which the ictal activity starts for each recording channel,

the epileptogenic zone within the brain can be determined

[2]. High performance brain implants are ideal tools for

detecting early ictal activity for localizing epileptogenic

zones accurately for subsequent surgical treatment. Another

application maybe to use them to provide a warning signal

to the patient when an incoming seizure is detected. These

implants may also be used as treatment tools by delivering

anti-epileptic drugs or stimulating the brain to counter-react

to developing seizures.

Although brain implants are very useful in medical ap-

plications, the design and construction of these devices are
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technologically challenging. Among a number of unsolved

problems, efficient energy management in brain computer

interface (BCI) is an important problem. Power requirement

and dissipation due to analog to digital conversion as well

as to wireless transmission are major limitations in the

implementation of human implants. Uniform sampling in

the analog to digital converters (ADCs) requires synchronous

implementation with a common clock shared with the digital

signal processor. The need for a clock is a source of power

consumption. In contrast, asynchronous circuits are not gov-

erned by a clock and consume low power. The elimination

of clocks in these circuits also reduces device sizes and

cuts electromagnetic interference (EMI) significantly. Due to

these desirable properties, Asynchronous Sigma Delta Mod-

ulators (ASDMs) have been proposed for data acquisition in

bio-monitoring systems [3].

An ASDM is a non-linear feedback system capable of

coding an analog signal using time information [6]. Recon-

struction of band-limited signal from the zero crossings of

the binary output of an ASDM is possible since the amplitude

information of the input signal is encoded in the pulse

widths of the output signal. In [3], the authors show how to

reconstruct the original signal from the output of the ASDM.

In the present work we provide a computationally efficient

reconstruction algorithm based on a Prolate Spheroidal Wave

Functions (PSWF) projection of the original signal [7], [9].

We show that many signals such as the electroencephalogram

(EEG), can be accurately represented by the PSWFs as

an interpretation of Shannon’s sampling theory using the

ASDM time codes. In order to transmit the data collected

from a number of signal channels, such as multiple EEG

electrodes without spatial blurring, we investigated an effi-

cient multiplexing method for wireless transmission using a

modulation system known as Orthogonal Frequency Division

Multiplexing (OFDM) [10]. In this paper we also assume

volume conduction communication in the human body [4],

[5] which, when compared to other methods, requires low

power consumption.

II. ASYNCHRONOUS SIGMA DELTA MODULATORS

An Asynchronous Sigma Delta Modulator (ASDM), Fig.

(1), is a nonlinear feedback system consisting of an integrator

and a non-inverting Schmitt trigger [6]. In the ASDM,

amplitude information of a signal x(t) is transformed into

time information without the quantization error that exists in

the synchronous sigma delta modulators.
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Fig. 1. Asynchronous sigma delta modulator

A. Time-encoding

Assume that the input x(t) of the ASDM is band-limited,

with a maximum frequency Ωmax, and bounded, |x(t)| ≤ c.

The output of the integrator, y(t), at time tk+1 > tk is

y(tk+1) = y(tk) +
1

κ

∫ tk+1

tk

[x(u) − z(u)]du.

Initially assuming that the Schmitt trigger is in the state

(−b,−δ) at the instant t = to, (y(to) = −δ and z(to) = −b),

the following equation holds:

δ = −δ +
1

κ

∫ t

to

[x(u) + b]du (1)

and since y(t) increases monotonically, the trigger switches

to the state (b, δ) at the time t = t1 > to the equation

−δ = δ +
1

κ

∫ t

t1

[x(u) − b]du (2)

is satisfied for some t = t2 > t1. Combining (1) and (2),

for the strictly increasing sequence tk, k ∈ Z the following

equation

∫ tk+1

tk

x(u)du = (−1)k[−b(tk+1 − tk) + 2κδ] (3)

uniquely describes the relationship between z(t) and x(t)
for all t ∈ R and |y| ≤ δ [3]. For future use, we call the

right-hand side term of (3) as v(k) such that

v(k) = (−1)k[−b(tk+1 − tk) + 2κδ].

The perfect reconstruction of x(t) is possible provided that

the sequence {tk} satisfies the condition [3] :

max
k

(tk+1 − tk) ≤ TN (4)

where TN = π/Ωmax is the Nyquist sampling period. Since

x(t) is bounded, i.e., |x(t)| ≤ c, equations (3) and (4) give

tk+1 − tk ≤
2κδ

b + c
≤ TN

providing a way to choose the parameters b, δ, and κ in terms

of the Nyquist sampling rate.

B. Reconstruction

The reconstruction of the band-limited signal x(t) from the

zero-crossings of z(t) requires a finite length approximation

of the sinc function and an approximation of the integral

in equation (3). The Shannon sinc-interpolation for the

nonuniform times {tk} is

x(t) =

∞
∑

k=−∞

γkS(t − tk) (5)

where γk are coefficients and S(t) is the sinc function. In [3],

the sinc function is approximated by complex exponentials

S(t) ≈

L
∑

m=−L

αejmΩ0t = α
sin((L + 0.5)Ω0t)

sin(0.5Ω0t)
(6)

where L is an arbitrarily larger number not connected with

the signal x(t), and Ω0 = Ωmax

L
. In the following section we

will show that using the Prolate Spheroidal Wave Functions

(PSWFs) [7] the maximum frequency of x(t) can be used to

determine the representation of the sinc function.

III. PROLATE SPHEROIDAL WAVE FUNCTIONS FOR

SAMPLING AND RECONSTRUCTION

The Prolate Spheroidal Wave Functions (PSWFs) have

maximum energy concentration within a given bandwidth

among all time-limited signals. The PSWFs {ϕn(t)} have

been considered for the reconstruction of band-limited sig-

nals from uniform and nonuniform samples [8], [9]. The

following are important properties of these functions:

• The PSWFs constitute an orthogonal basis for the space

of finite energy signals with finite support [−T, T ], or

signals in L2(−T, T ), and an orthonormal basis for the

space of bandlimited functions [8].

• The sinc function S(t), which belongs to the space

of band-limited signals, can be expanded in terms of

the basis {ϕn(t)}. The shifted sinc function can be

expressed as

S(t − kTs) =

∞
∑

n=0

ϕn(kTs)ϕn(t)

• For signals with a finite support, Parseval’s theorem and

orthogonality on the interval (−T, T ) give

∫ T

−T

|x(t)|2dt =

∞
∑

m=0

λm|γm|2

where the eigenvalues λm are related to the energy of

the signal and are ordered as λ0 ≥ λ1 ≥ λ2 ≥ . . . > 0
and coefficients γm.
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The Shannon’s sinc interpolation for a bandlimited signal

x(t) as an expansion in terms of the PSWFs:

x(t) =

∞
∑

k=−∞

x(kTs)

∞
∑

n=0

ϕn(kTs)ϕn(t)

=

∞
∑

n=0

[

∞
∑

k=−∞

x(kTs)ϕn(kTs)

]

ϕn(t)

=

∞
∑

n=0

γnϕn(t). (7)

Considering a time-limited signal x(t), 0 < t ≤ T ,

and assuming the signal energy outside the given frequency

band (−Ωmax,Ωmax), is small enough to be ignored, an

approximate of x(t) is given by the PSWF projection

x̂(t) =

M−1
∑

n=0

[

N−1
∑

k=0

x(kTs)ϕn(kTs)

]

ϕn(t)

=
M−1
∑

n=0

γM,nϕn(t) (8)

where Ts ≤ π/Ωmax and M is the number of PSWFs

that gives a good approximation for the signal depending

on Ωmax. This indicates that depending on Ωmax, we can

find a PSWF representation of the sinc function of order M
as shown in [9].

IV. ASDM RECONSTRUCTION ALGORITHM

Assume that the input to the ASDM is approximated by

a PSWF projection

x(t) ≈ x̂(t) =

M−1
∑

n=0

γM,nϕn(t)

where the value of M is chosen by making the frequency

of the γM,M coincides with the frequency of x(t). If we let

t = k∆t, such that ∆t < π/Ωmax the projection can be

written

x̂ = Φ γM (9)

The integral in (3), for b = 1, can be approximated by means

of the trapezoidal rule as

∫ tk+1

tk

x(t)dt ≈ 0.5x(tk)∆t +

Nk−1
∑

i=1

x(tk + i∆t)∆t

+0.5x(tk+1)∆t

where Nk = (tk+1 − tk)/∆t. Letting v(k) in Eq. (3) be the

entries of a vector vk computed at each of the {tk} values

we have that

vk ≈ qk Φ γM

where the entries of the row vector qk are given as

qk,j =







0.5∆t j = Nk, and j = Nk+1

∆t Nk + 1 ≤ j ≤ Nk+1 − 1
0 otherwise

Thus for the time sequence {tk, k = 1, · · · , K} equation (3)

can be written as

v = Q Φ γM (10)

where Q is the matrix composed of the vector qk and v is

composed of the term in the right-hand of (3). Computing

γM = [Q Φ]†v (11)

we can use it to find the projection x̂ in (9) where †
represents the pseudoinverse operation. To see an example of

comparison between the same order PSWF and sinc function

(with exponential approximation) reconstruction, see Fig.6

for an arbitrary bandlimited signal.

V. MODULATION/MULTIPLEXING FOR ASDM OUTPUT

We take advantage of the Orthogonal Frequency Division

Multiplexing (OFDM) for a bandwidth efficient transmission

of multichannel brain data. OFDM is a multicarrier modu-

lation method of which subcarriers overlap in the frequency

domain. The mutual orthogonality of the subcarriers in

the frequency domain ensures the recovery of data at the

receiver for each substream. It is possible to use a chirp

basis that is guaranteed to be orthogonal by the Fractional

Fourier Transform (FrFT) method [10] where instantaneous

frequency IF (t) of the chirp is:

IFu(t) = u/T − cot αt (12)

for channels u = 0, 1, . . . , U − 1 and signal duration T .

To reduce the bandwidth, the output zu(t) of each of the

channels requires pulse shaping. This can be achieved by

approximating the derivative of zu(t) by wu(t) = 0.5[zu(t)−
zu(t−∆t)]. Using the PSWF as the pulse shaping filter h(t),
the output of the filter su(t) = wu(t) ∗ h(t) which is then

modulated by the chirp cu(t). The modulated signal for the

U channels is

p(t) =

U−1
∑

u=0

su(t) · cu(t) (13)

At the receiver, the time codes corresponding to each

channel are obtained by multiplying by the conjugate of

the corresponding chirp and then low pass filtering. The

corresponding demodulated signal sd,u(t) for each channel

u is

sd,u(t) = p(t) · c∗u(t). (14)

The time codes can be found by finding the peaks of the

demodulated waveforms.

VI. SIMULATIONS

In our simulations we used subdural EEG signals of

an epilepsy patient. For 4-channels, ASDM sampling was

applied giving time codes for each zu(t), u = 1, . . . , 4.

The parameters of the ASDM were chosen for a sampling

period of 5 msec. After pulse shaping (see Fig.2) and

modulation/multiplexing (see Fig.3), the total signal p(t), as

a collection of modulated signals su(t), is to be transmitted

through a short range communication channel to a PDA
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mounted on the human body. Each demodulated waveform

is shown in Fig. 4. Then a more power consuming digital

RF communication system can be used for long distance

communications. In a remote clinical environment the signals

corresponding to different channels will be reconstructed.

Fig. 5 shows the reconstructed 0.14 seconds long subdural

EEG for one of the channels using the proposed method.
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Fig. 2. Pulse-shaped time codes for 4 channels using PSWF pulses.
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Fig. 3. Chirp-modulated signals from 4 channels.

VII. CONCLUSIONS

We have presented an efficient data acquisition and re-

construction method for biomedical implants, especially for

the monitoring of the brain activity of epilepsy patients.

Our method is energy efficient and sufficiently accurate,

providing a useful tool for detecting the onsets of epilepsy

seizure events. The reconstruction is based on a PSWF

representation of the sinc function with order given by the

maximum frequency of the signal being sampled, rather an

using for it an exponential expansion of arbitrary order.

The modulation is implemented using chirp OFDM with the

bandwidth of each channel reduced by PSWF pulse shaping.
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