
  

  

Abstract— Electromyogram (EMG) pattern recognition 
approach has been investigated widely with able-bodied 
subjects for control of multifunctional prostheses and verified 
with high performance in identifying different movements. 
However, it remains unclear whether transradial amputees can 
achieve similar performance. In this study, we investigated the 
performance of EMG pattern recognition control of 
multifunctional transradial prostheses in five subjects with 
unilateral below-elbow amputation. Testing results on both 
residual and intact arms showed that the average classification 
error (21%) of amputated arms for ten motion classes (four 
wrist movements, six hand grasps) and a ‘no movement’ class 
over all five subjects was about 15% higher than that of intact 
arms. For six basic motion classes (wrist flexion/extension, wrist 
pronation/supination, and hand open/close), the average 
classification error over all five subjects was about 7% from 
residual arms, which was similar to the result from intact arms 
(6%). Only six optimal electrode channels might be needed to 
provide an excellent myoelectric control system for the six basic 
movements. These results suggest that the muscles in the 
residual forearm may produce sufficient myoelectric 
information to allow the six basic motion control, but 
insufficient information for more hand functions with fine 
finger movements. 

I. INTRODUCTION 
RANSRADIAL amputation is the most common type of 
upper limb amputations. For transradial amputees, either 

the remaining shoulder motion can be harnessed for 
body-power or myoelectric recordings from the residual 
muscles can be used to control one motion at a time in an 
externally powered artificial limb. Most commercially 
available myoelectric transradial prostheses use the 
amplitudes of surface electromyography (EMG) signals from 
the forearm flexors and extensors to control hand closing and 
opening. If wrist movements are desired, the patients must 
co-contract their forearm muscles to switch into a wrist 
movement mode [1, 2]. Switching between different modes is 
slow and cumbersome and is not intuitive to use the same 
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muscle contractions to control two different functions. 
A significant improvement over conventional myoeletric 

control strategy is implicit in pattern recognition based 
myoelectric prosthesis control, in which the users elicit the 
contraction corresponding to a movement that they want to 
control, and an EMG pattern recognition based classifier 
chooses the appropriate class of motion [3-15]. The classifier 
is trained by having the user perform repetitions of the 
movements. When the trained classifier predicts the intended 
movement, a corresponding motion command is sent to a 
prosthesis controller for implementation of the movement. As 
a result, this control scheme may allow users to more easily 
and intuitively control their prostheses with multiple degrees 
of freedom. 

The feasibility and performance of pattern recognition 
algorithms with forearm muscles have been investigated in a 
number of studies with able-bodied subjects [3-12]. In each 
case, several bipolar electrodes (from 4-16) were placed on 
the circumference of the mid-portion of the intact forearm to 
mimic the case of transradial amputation for EMG recordings. 
Using different pattern recognition algorithms, such as linear 
discriminant analysis (LDA) [4,15], artificial neural networks 
[14], and fuzzy logic [9, 13], high classification accuracies 
(>93%) for six to ten wrist and hand movements were 
consistently achieved with able-bodied subjects. However, 
the studies on transradial amputees who are the users of 
transradial prostheses are rarely conducted. As a result, it is 
unknown whether similar classification performance can be 
achieved with transradial amputees with limited muscles of 
their residual forearms. A recent study included two 
transradial amputees (one with a trauma-induced unilateral 
transradial amputation and another with a congenital 
unilateral transradial limb-deficiency) and used three 
electrodes to collect surface EMG signals on the residual 
forearm [13], but only three wrist classes (wrist 
flexion/extension and either wrist pronation or supination) 
were included. In this study, we investigated the performance 
of pattern recognition algorithm for classification of different 
hand and wrist movements with five unilateral transradial 
amputees. We also conducted an analysis of the electrode 
configuration to investigate the feasibility of using a reduced 
number of electrodes without compromising classification 
accuracy. The results of this study could aid the future 
development of a multifunctional myoelectric prosthesis for 
transradial amputees. 
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II. METHODS 

A. Subject and Experiment 
Five people with unilateral transradial (TR) amputations 

participated in the study. Their ages ranged from 28 (TR1) to 
77 years (TR5) and their post-amputation times varied from 3 
months to 21 years. Three subjects used a myoelectric 
prosthesis, one subject used a body-powered prosthesis and 
one subject (only 3 months post amputation) had not yet 
received any prosthesis when the study was conducted. This 
study was approved by the Northwestern University 
Institutional Review Board and the informed consent was 
obtained from all subjects. 

Each subject attended three consecutive experiments. The 
first experiment was conducted on the amputated side (Trial 
1), the second on the intact side as a control (Trial 2), and the 
third on the amputated side again for possible performance 
improvement (Trial 3). The time between two consecutive 
experiments ranged from a few days to approximately three 
months, depending on subject availability.  

 

B. EMG Data Acquisition 
Twelve self-adhesive bipolar electrodes with a circular 

contact surface diameter of 1.25 cm and a center-to-center 
distance of 2 cm were used for EMG recordings. For 
amputated arms, 8 of the 12 electrodes were uniformly placed 
around the proximal portion of the forearm and other 4 
electrodes were positioned on the distal end (Fig. 1(a)). For 
intact arms, the 12 electrodes were placed on the proximal 
forearm (6 around), the wrist (3 around), and the hand (Fig. 
1(b)). A large circular electrode was placed on the elbow of 
the tested arm as a ground. The EMG signals were amplified 
and band-pass filtered (5-400 Hz), and then sampled at a 
frequency of 1 kHz and acquired with a custom data 
acquisition and processing system [15]. 

Ten wrist and hand motion classes plus a “no movement” 
class were included in the study (Fig. 2). In each experiment, 

EMG data were acquired in eight consecutive trials. In each 
trial, all the 11 classes were repeated twice and held for 4 s, 
producing 8 s of EMG recordings per class. There was a 3 s 
interval between consecutive movements in the four 
even-numbered trials, and a variable time interval (3 s, 2 s, 0 s, 
and 1 s, in turn) in the four odd-numbered trials in an attempt 
to enhance the classifier’s robustness. 

C. EMG Pattern Classification 

EMG pattern classification was performed on analysis 
windows. EMG recordings were segmented into a series of 
analysis windows with a time length of 150 ms and a time 
increment of 100 ms. Commonly used four time-domain 
features (mean absolute value, number of zero crossings, 
waveform length and number of slope sign changes) [3] were 
extracted from each analysis window. EMG features from the 
four odd-numbered trials were used as the training data set to 
train a linear discriminant analysis (LDA) [15] classifier for 
the 11 motion classes, and EMG features from the four 
even-numbered trials were used as the testing data set to 
evaluate the performance of EMG pattern recognition 
algorithm for the classification of the 11 motion classes.  
 

D. EMG Channel Selection 
Using a larger number of electrodes can capture more 

myoelectric signals, but it simultaneously adds more 
complexity, weight, and cost to a prosthesis. In order to 
evaluate the feasibility and performance of using a reduced 
number of electrodes for control of multifunctional 
transradial prostheses, an exhaustive search algorithm was 
used to determine the “optimal” number and location of EMG 
electrodes based on the 12-channel EMG recordings. All 
possible electrode combinations for a reduced number of 
channels (1~11) were analyzed with classification error for 
different wrist and hand movements. The EMG recordings 
from the channels in each combination were selected from the 
12-channel training data set and used to train individual LDA 
classifiers. The EMG recordings from the same channels 
were selected from the 12-channel testing data set and used to 
evaluate each classifier’s performance in identifying different 
motion classes. For each number of channels, the channel 
combination that produced the lowest classification error was 
considered the ‘optimal’ channel configurations.  

III. RESULTS 

A. Classification Performance for 11 Classes 
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Fig. 1.  Placement of 12 bipolar electrodes for EMG recordings on an 
(a) amputated arm and (b) intact arm. 

No movement      Wrist flexion      Wrist extension   Wrist pronation Wrist supination

Hand open     Chuck grip       Key grip      Power grip   Fine pinch grip   Tool grip

No movement      Wrist flexion      Wrist extension   Wrist pronation Wrist supination

Hand open     Chuck grip       Key grip      Power grip   Fine pinch grip   Tool grip

Fig. 2.  Ten classes of wrist functions and hand grasps and a ‘no 
movement’ class included in the study. 
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For the classification of all 11 classes, EMG pattern 
recognition testing on amputated arms produced lower or 
equal classification errors in the second residual arm 
experiment (Trial 3) for all five subjects than in the first 
(Trial 1) (Fig. 3(a)). The average classification error over the 
five subjects was about 5% lower in the second residual arm 
experiment than in the first, but this difference was not 
significant (p<0.4, t-test). Amputated arms over all five 
subjects produced significantly higher classification errors 
(Trial 3) than their intact arms (p<0.02) (Fig. 3(b)). The 
average classification error over all five subjects was 

approximately 21% for the residual arms, which was about 
15% higher than that for the intact arm. All five subjects 
achieved significantly lower classification errors in 

performing wrist functions with their residual arms than in 
doing hand grasps (p<0.05) (Fig. 3(c)). The average 
hand-function classification error (31%) over five subjects 
was 20% high in comparison with the wrist-movement 
classification error (11%).  

 

B. Classification Performance for Six Motion Classes 
When the motion classes were reduced from ten classes of 

wrist and hand movements to six basic motion classes (wrist 
flexion/extension, wrist pronation/supination, and hand 
open/close (power grip)), the classification performance 
achieved with residual arms was significantly improved in 
five subjects (p<0.03)  (Fig. 4(a)). The average classification 
error over all five subjects decreased from 21% for the 11 
motion classes to about 7% for the 6 motion classes, which is 
similar to the result from the intact arm test (6%). 
 

C. Channel Reduction 
As shown in Fig. 4(b), use of four to six optimally placed 

electrodes produced comparable performance to the use of all 
12 electrodes for classification of the six basic motion classes.  
Reducing EMG channels from 12 to 6 only increased 
classification errors by 1-5% in the five subjects (Fig. 4(a)). 
Using six optimally selected electrodes produced an average 
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Fig. 3.  Classification errors for 11 classes of movements. The mean of 
classification errors over the five subjects is shown on the right side. (a) 
The classification errors in the five subjects from two amputated arm 
tests (Trial 1 & Trial 3). (b) The classification errors in the five subjects 
from the second residual arm test (Trial 3) and the intact arm test (Trial 
2). (c) The wrist and hand classification errors from the second residual 
arm test (Trial 3). 
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Fig. 4.  (a) Classification errors for six classes of movements from the 
second amputated arm test (Trial 3) when using all 12 channels and the 
6 optimally selected channels, respectively. The mean of classification 
errors over the five subjects is shown on the right side. (b) Average 
classification errors over all five subjects versus number of surface 
electrodes for the classification of the six basic movement classes. 
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error of 7% over the subjects for the six motion classes; this 
was only 2% larger than the average classification error when 
using all 12 electrodes.  

 

IV. DISCUSSION 
Use of able-bodied subjects may be inappropriate for 

assessment of the performance of EMG pattern recognition 
based transradial prosthesis control. In this study, we 
evaluated the performance of EMG pattern recognition in 
control of a transradial prosthesis with five people with 
transradial amputations. Our results showed that average 
classification error for 11 classes of wrist and hand functions 
was approximately 15% higher when subjects used their 
amputated arms, as opposed to using their intact arms. 
Getting familiar with the myoelectric control system can 
improve the prosthesis control performance, but could not 
entirely compensate for the effect of the loss of the 
myoelectric control information. The high classification 
errors for ten classes of wrist and hand functions with the 
amputated arms indicated that remaining muscles on residual 
forearm might not provide enough myoelectric information 
for control of a multifunctional transradial prosthesis with all 
ten classes of wrist and hand movements. The classification 
errors with amputated arms had an increasing trend from 
subject TR1 (28 yrs) to TR5 (77 yrs), which suggested that 
muscular atrophy in ageing would weaken myoelectric 
information. 

Separate examination of wrist and hand movements 
demonstrated that the high classification errors for amputated 
arms were mainly due to decreased classification accuracies 
in recognizing hand grasps. This finding is not surprising, as 
the majority of muscles responsible for wrist movements 
remains following transradial amputation, while intrinsic 
hand muscles which share control of hand grasps are lost 
entirely. The exclusion of four fine figure movements (chuck 
grip, key grip, fine pinch grip and tool grip) could 
significantly decrease the classification errors for amputated 
arms. For the six basic motion classes (wrist 
flexion/extension, wrist pronation/supination, and hand 
open/close (power grip)), the average classification error over 
all five subjects was about 7% from their amputated arms, 
only 1% higher than the result from their intact arms. And 
only six optimal electrode channels might be needed to 
provide an excellent myoelectric control system (about 9% 
classification error on average) for the six basic movements. 
This suggested that the remaining muscles in the residual 
forearm may produce sufficient myoelectric information to 
allow the six basic motion control in a transradial prosthesis.  

It should be noted that only offline pattern recognition 
classification performance was considered in this study. 
Future investigations needs to be conducted in real-time 
transradial prosthesis control to validate the performance of 
EMG pattern recognition based control. 
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