
  

  

Abstract—In this report, we improve the motion 
discrimination method from electromyogram (EMG) for a 
prosthetic hand and propose prosthetic hand control. In the past, 
we proved that a motion discrimination method using conic 
models could discriminate three hand motions without the 
incorrect discriminations that the elbow motions cause. In this 
research, to increase discrimination accuracy of motion 
discrimination using conic models, we propose a feature 
extraction method using quadratic polynomials. Additionally, 
because many prosthetic hands using motion discrimination 
have constant motion speed that can’t be controlled, we propose 
an angular velocity generation method using multiple regression 
models. We verified these methods by controlling the 3D hand 
model. In the experiment, the proposed method could 
discriminate five motions at a rate of above 90 percent without 
the incorrect discriminations that elbow motions cause. 
Moreover, the wrist joint angle of the 3D hand model could be 
controlled by standard variation of 3[deg] or less. 

I. INTRODUCTION 
yoelectric prosthetic hands, which are controlled by 
electromyogram (EMG) signals, have the good 

functionality and visual quality. However, many myoelectric 
prosthetic hands can perform only two motions (opening and 
gripping of the hand); they perform one motion when one 
muscle contraction, such as opening when the wrist extensor 
muscle contracts and closing when the wrist flexor muscle 
contracts. Moreover, myoelectric prosthetic hands must be 
adjusted to users because EMG signals vary by individual. To 
improve myoelectric prosthetic hands, it is effective to apply 
the methods that can automatically adjust prosthetic hands to 
users by learning EMG signals and can discriminate a hand 
motion by the signals for controlling it. Many researchers 
have studied the discrimination methods [1]-[4]. In these 
cases, artificial neural networks are commonly applied 
because they can consider the nonlinearity of EMG signals, 
but these methods take a long time to learn the EMG signals.  
 Considering this point, we proposed a hand discrimination 
method using linear multiple regression models [5]. This 
method doesn’t consider the nonlinearity of EMG signals, but 

 
Manuscript received April 7, 2009. This work was partially supported by 

New Frontier of Biomedical Engineering Research. 
Naoyuki Kurisu is with the Mechanical Engineering Department, 

Doshisha University, Kyotanabe, Kyoto 610-0321 Japan (phone: +81-774- 
65-6488; fax: +81-774-65-6488; e-mail: dtj0335@mail4.doshisha.ac.jp). 

Nobukata Tsujiuchi is with the Mechanical Engineering Department, 
Doshisha University, Kyotanabe, Kyoto 610-0321 Japan (e-mail: ntsujiuc@ 
mail.doshisha.ac.jp). 

Takayuki Koizumi is with the Mechanical Engineering Department, 
Doshisha University, Kyotanabe, Kyoto 610-0321 Japan (e-mail: 
tkoizumi@mail.doshisha.ac.jp). 

it learns EMG signals quickly. We proved that three hand 
motions (open, close and chuck) can be discriminated by 
EMG signals measured from the forearm. However, many 
myoelectric prosthetic hands using motion discrimination 
incorrectly discriminate elbow motions as a certain hand 
motion. In previous research, to solve this problem, we 
proposed a hand discrimination method using conic models, 
which can learn EMG signals in real time. We proved that the 
proposed method could discriminate three hand motions from 
EMG signals without the incorrect discriminations that the 
elbow motions cause [6].  

In this research, to increase the discrimination accuracy of 
conic models, we propose a feature extraction method using 
quadratic polynomials. A quadratic polynomial extracts a 
feature of a motion to project EMG signals into feature space 
that makes them easier to discriminate. In addition, to control 
the motion speed of the prosthetic hand, we propose an 
angular velocity generation method using multiple regression 
models. Since many prosthetic hands using motion 
discrimination have constant motion speed that can’t be 
controlled, this is unnatural compared with human hands.  

We verify these proposed methods by controlling a 3D 
hand model on a PC. In the experiment, we verify the 
discrimination accuracy and that the proposed method can 
prevent incorrect discrimination that elbow motions cause. 
Moreover, we verify the accuracy of the wrist angle control of 
the 3D hand model. 

II. THEORY 
Fig.1 shows the 3D Hand Model Control System. The 

system is composed of the feature extraction method using 
quadratic polynomials, the motion discrimination method 
using conic models and the angular velocity generation 
method using multiple regression models. The quadratic 
polynomial extracts a feature of a motion from EMG signals 
measured from the forearm. The conic models discriminate 
the motions from the features. Discriminated motions are 
hand motions (open, close and chuck) and wrist motions 
(extension and flexion). At the same time, the multiple 
regression models generate an angular velocity corresponding 
to the wrist motions from the EMG signals. When a hand 
motion is discriminated, the hand function of the 3D hand 
model is switched. When a wrist motion is discriminated, the 
wrist joint of the 3D hand model is controlled by generated 
angular velocity corresponding to discriminated motion.  
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Fig. 1 3D Hand Model Control System  

A. Feature Extraction 
Fig.2(a) shows an example of decision regions for conic 

models in feature space in the case of discriminating motions 
i, j. In Fig.2(a), shaded regions are decision regions 
corresponding to motions i, j, dashed lines are boundaries of 
decision regions, and solid lines are trajectories of EMG 
signals when motions are performed. As shown in Fig.2, the 
trajectories start and leave from near the original point then 
return to this point because EMG signals are weak when 
muscles don’t contract and become strong when muscles 
contract. The top of the cone is the amplitudes of EMG 
signals when muscles don’t contract and the cone-shaped 
decision region is located in such a way as to wrap a trajectory 
corresponding to motions i, j. Because the trajectories 
corresponding to elbow motions are greatly away with 
trajectories of discriminated motions, the conic models 
prevent incorrect discriminations about elbow motions.  
However, as shown in Fig.2(b), decision regions become 
small in the case of discriminating motions with similar 
trajectories. Consequently, quadratic polynomials project 
trajectories of motions into the feature space that has large 
enough decision regions. 

 
(a)                                               (b)  

Fig. 2 Examples of Decision Regions using Conic Models 
 

1) Quadratic Polynomials: The quadratic polynomials 
extract a feature of each discriminated motion from EMG 
signals. The feature corresponding to a motion takes the 
biggest value when the motion is performed. Every motion 
model using the quadratic polynomials is modeled.  

A feature fqi using the quadratic polynomials corresponding 
to motion i is expressed by the quadratic polynomials from 
amplitudes of EMG signals that are full-wave rectified and 
smoothed after being measured from L channels: 
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where a, b and c are coefficients. These coefficients are 
presumed by the least squares method using a target signal 
that is generated by a method described later. 

2) Generation Method of a Target Signal: A target signal is 

needed when presuming coefficients by the least squares 
method. The generation of target signal tsn is described as 
follows. Each motion is performed once, and sum S of the 
EMG signals of each channel is calculated. It is assumed that 
there are L channels of the EMG signal measured and N 
motions are operated. 
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Since the EMG signal produces a peak whenever a motion is 
operated, S produces N peaks. The n-th peak corresponds to 
the motion performed at the n-th. The target signal 
corresponding to motion n is calculated as follows: 
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where i (i = 1, …, n, …, N) is the number of peaks. d is a 
coefficient which takes the value of 0 to 1. e is the threshold 
value of S. While S falls below e, the target signal is generated 
as 0. The target signal takes the biggest value when a 
corresponding motion is performed. Because EMG signals 
can be measured and teaching signals can be calculated in real 
time, coefficients can be updated without learning time.  

B. Motion Discrimination 
The cone-shaped decision regions are located by conic 

models. The conic models generate signals that have a 
positive value when a certain motion for discrimination is 
performed and a negative value when other motions for 
discrimination and elbow motions are performed. In this 
research, these signals are called motion signals. A conic 
model of each motion is composed. A discriminate result is 
the motion corresponding to the motion signal that has the 
greatest positive value. 

1) Conic Model: A motion signal using a conic model 
corresponding to motion i is expressed as the following 
equation: 
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where c = (c1, …,cn, …, cN) is a vector that indicates the top of 
a cone, ai = (ai1, …,ain , …, aiN) is a unit vector that indicates 
the center line of a cone and 

iω  is a vertex angle of a cone. In 
this research, c is the amplitude of EMG signals when 
muscles don’t contract, and ai is the normalized amplitude of 
EMG signals offset by c when EMG signals are at a peak by 
performing motion i. c and ai are obtained in real time. 

2) The Method for Obtaining a Vertex Angle: Vertex 
angle iω  can be decided by only the positional relation of 
trajectories corresponding to motions for discrimination. 
Fig.3 shows trajectories corresponding to motions i, j and k. 
First, we calculate half angles between the center line 
corresponding to motion i and other motions. Next, we select 
the minimum half angle to 

iω . The above method is 
formulated as follows. 
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Fig. 3 Method for Obtaining the Vertex Angle of the Cone 
 

C. Angular Velocity Generation 
Multiple regression models generate angular velocities of 

motions. Generated angular velocities correspond to the 
amplitude of EMG signals when motion is performed. 
Angular velocity V(T)i corresponding to motion i is expressed 
as the following equation: 

∑ = − ++= L
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where a, b and c are coefficients obtained by learning. V(T-1)i is 
feedback angular velocity. Target signals are chirp signals. 
These coefficients are presumed by ridge regression.  

III. EXPERIMENT 

A. Experimental Equipment 
Fig.4 shows the experimental system. EMG amplifiers 

(EMG-025, Harada Hyper Precision Inc.) that are amplified 
500 times (54 dB) are used to measure EMG signals. 
Disposable electrodes built into the preamplifier are 
employed. EMG signals are measured in four channels from 
surface electrodes, and the electrodes are arranged around the 
forearm. The PC (Pentium IV, 2.8 GHz, 1GB) served as the 
host computer. The 3D hand model control system is 
designed using MATLAB/Simulink (dSPACE). The 3D hand 
model was built by MotionDesk (dSPACE). DS1005 (Power 
PC 800 MHz, dSPACE) and DS2002, DS2103 and DS3002 
are applied for DSP, A/D, and D/A conversions.  

Obtained EMG signals were full-wave rectified and 
smoothed by 300ms moving average for feature extraction. 
Angular velocity generation was smoothed by 150ms moving 
average, and generated angular velocity was smoothed by 
150ms moving average. Furthermore, sum EMG signals have 
a threshold value. If sum EMG signals fall below the 
threshold value, motions can’t be discriminated. 

 

 
 

Fig. 4 Experimental System 

B. Experimental Method 
Subjects were five able-bodied adults (A, B, C, D, and E). 

Subjects A and B had previous experience with experiments. 
Subjects C, D, E had no experience and were trained to use 
the experimental system for one-two hours. 

For obtaining learning parameters of quadratic 
polynomials, we made subjects perform motions each five 
times. Then, for obtaining learning parameters of conic 
models, we made subjects perform each one motion. In 
addition, for obtaining learning parameters of multiple 
regression models, we made subjects contract forearm 
muscles according to an amplitude of a chirp signal on the 
display. 

To verify discrimination accuracies, we made subjects 
perform motions 30 times each, and confirmed that the 
proposed method doesn’t incorrectly discriminate hand 
motions as a result of elbow motions. Moreover, to verify 
control accuracies of the 3D hand model wrist joint, we made 
subjects perform each wrist motion for the wrist angle to 
become the target value. In a trial, subjects performed only a 
wrist motion.  

IV. RESULT AND DISCUSSION 

A. Experiment Results of Motion Discrimination 
Fig.5 shows an example of the features using quadratic 

polynomials when a subject performed motions in the 
following order: open, close, chuck, wrist extension, wrist 
flexion forearm motions, and extension, flexion, external 
rotation and inner rotation elbow motions. An example of the 
motion signals using conic models, sum EMG signals and 
discrimination results is shown in Fig.6, 7, 8 respectively. All 
features had the biggest value when the corresponding motion 
was performed. All motion signals had a positive value when 
a corresponding motion was performed, and had a negative 
value when the subject performed other hand motions and 
elbow motions.  

Table I (a) (b) shows discrimination accuracies using EMG 
signals and features. In discrimination motions from EMG 
signals, some motions had discrimination accuracies below 
90 percent. However, for features, all motions could be 
discriminated at rates of above 90 percent. Moreover, the 
proposed method discriminated elbow motions incorrectly as 
a certain hand motion. 

 

 
Fig. 5 Features using Quadratic Polynomials 
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Fig. 6 Motion Signals using Conic Models 

 

 
Fig. 7 Sum EMG Signals 

 

 
Fig. 8 Motion Label 

 
Table I Discrimination Rates [%] 

(a) Conic Models from EMG Signals      (b) Conic Models from Features 

    
 

B. Experiment Results of 3D Hand Model Control 
Fig.9(a) (b) shows an example of the wrist angle and 

generated angular velocity when a subject performed wrist 
extension and wrist flexion. Standard variation between target 
angle and final wrist angle is shown in Fig.10. According to 
this figure, all subjects could control the 3D hand model wrist 
joint by standard variation of 3[deg] or less. This result 
indicates that the prosthetic hand control has admissible 
accuracy for practical use.  

 

     
 
             (a)  Wrist Extension                          (b)   Wrist Flexion 

Fig. 9 Wrist Angle and Angular Velocity  

0

0.5

1

1.5

2

2.5

3

3.5

A B C D E

Subject

St
an

da
rd

 V
ar

ia
tio

n 
[d

eg
]

Wrist  Ext.

Wrist  Fle.

 
Fig. 10 Standard Variation [deg] 

V. CONCLUSION 
In this research, to increase the discrimination accuracy of 

conic models, we proposed a feature extraction method using 
quadratic polynomials. In addition, to control the motion 
speed of the prosthetic hand, we proposed an angular velocity 
generation method using linear multiple regression models. 
After verification, we reached the following conclusions. 
1) We proposed a feature extraction method using quadratic 

polynomials. By this method, open, grip, chuck, wrist 
extension and wrist flexion can be discriminated at a rate 
of above 90 percent without the incorrect discrimination 
that elbow motions cause. 

2) Discrimination accuracy using the conic model from 
features was higher than from EMG signals. 

3) We proposed an angular velocity generation method 
using multiple regression models. By this method, the 
wrist joint angle of the 3D hand model could be 
controlled by a standard variation of 3[deg] or less.  
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