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Abstract— The Cardiac Output (CO) can be calculated from
the thoracic cardio-impedance signal from several methods, and
all of them are linked to the frequency information, information
that is limited by the type of filtering used before. A method-
ology is proposed to evaluate the effect of the commonly used
methods of filtering, and an improvement of the SFLC LMS-
based algorithm by the use of RLS algorithm is also tested.
Performances of algorithms are then evaluated considering
different types of noise such as white noise or combination
of sinusoidal noises to simulate the effect of respiration and
body movements.

I. INTRODUCTION

Impedance CardioGraphy (ICG) is a technique to obtain

the cardiac output in a simple, repeatable, cost-effective

and non-invasive procedure on a beat-by-beat basis. Besides

these advantages, it has a major problem. ICG is particularly

sensitive to noise, whether induced by a body movement,

shock or simply by ventilation.

Depending on the processing, the impedance signal Z =
Z0 + ∆Z can be filtered and studied with its derivative,

or the dZ/dt signal can be directly filtered to extract the

fiducial points (see Fig. 1) : the opening of aortic valves (B),

aortic valve closure (X) and the maximum value of dZ/dt
following the opening of valves (C). To our knowledge, there

are only few methods to detect these events in time (see [1]

and [2]).

However, the methods of event detection require that the

frequency information of dZ/dt is quite clean and not too

buried in noise. Hence, we didn’t focus our work on event

detection, but mainly on filtering the signal.

Several studies have been carried out on this subject in

order to obtain reliable measurements (see [3], [4] and [5]

for example). A. K. Barros has developed the Scaled Fourier

Linear Combiner (SFLC), based on an adaptive algorithm

Least Mean Square (LMS) [6]. The principle of an adaptive

filter is to denoise the impedance signal (Z) from a refer-

ence signal or a reference noise. A. K. Barros constructed

reference signal, assumed periodic with R-R period, from

a Fourier series, and the coefficients of this Fourier series

are estimated using the LMS algorithm. This method allows

to reconstruct the information related to cardiac cycle and

to reject all the information containing frequencies different
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Fig. 1. Basic features of dZ(t)/dt signal used for application and
diagnostic purposes

than heart rate and associated harmonics: noise artifact or

breathing. However, parameters of the adaptive algorithm

itself may affect the quality of the reconstructed signal.

About this last point, no extensive study has been carried

out on the subject to our knowledge.

After recalling the principle of SFLC algorithm, we pro-

pose an improvement of it by replacing the LMS algorithm,

originally used by Barros, by the Recursive Least Square

(RLS) algorithm [7]. A methodology is then presented to

compare different approaches. Finally, we discuss the results

obtained using the different filters (SFLC-LMS and SFLC-

RLS) and Ensemble Averaging (EA).

II. ADAPTIVE ALGORITHMS AND SFLC

The output of SFLC estimated from ICG (Z and its

derivative dZ/dt) can be expressed during the mth R-R

interval (RRI) which contains Lm samples:

yn = w
T
nxn, n = 0, · · · , Lm − 1 (1)
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T
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)
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(2)

SFLC output approaches the input signal by a Fourier

series with H harmonics and coefficients of the series are

estimated in wn.

A. LMS Algorithm

In classical SFLC [6], wn is updated using LMS algo-

rithm:

wn+1 = wn + 2µ(dn − yn)xn (3)
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where dn is the nth sample of the original ICG in the

mth RRI. LMS algorithm minimizes iteratively the mean

quadratic error between original signal and reconstructed sig-

nal by Fourier series. µ is the factor that controls the stability

and the rate of convergence: the higher the value of µ, the

higher the rate of convergence but the lower the stability.

The parameter µ is then adjusted to manage the compromise

between the stability and the rate of convergence.

B. RLS Algorithm

RLS algorithm can be summarized as

kn = Pn−1xn

λ+xT
n
Pn−1xn

ξn = dn − w
T
n−1xn

wn = wn−1 + knξn

Pn = λ−1
Pn−1 − λ−1

knx
T
nPn−1.

(4)

The computation of wn is based on the a priori estimation

error ξn and the gain vector kn. The parameter µ in the LMS

algorithm is replaced by an expression which depends on

Pn, the recursive estimation of the inverse of the correlation

matrix of the input reference, and λ the forgetting factor:

0 < λ ≤ 1. This last parameter controls the rate of adaptation

of the algorithm: the lower is λ, the higher the rate of

adaptation. The parameter λ is then adjusted to manage the

compromise between stability and rate of convergence.

The RLS algorithm is more complex than LMS algorithm,

but it does not delay its execution in real time due to

performances of existing real time systems. Moreover, the

rate of convergence is faster. Finally, performance is better

in stationary case.

III. METHODOLOGY OF COMPARISON

In [6], A. K. Barros chose to use a noisy triangular signal

to evaluate the performances of his algorithm. However, the

characteristics of a cardiac signal may vary the performance

as the frequency content is different from the one of a trian-

gular signal. That’s why, to propose a complete methodology

to compare the performance of EA and the different SFLC

algorithms -the SFLC-LMS and the SFLC-RLS-, we need

reference of noise and cardiac information. We then propose

to create a simulated impedance signal as similar as possible

to a real impedance signal.

To achieve this, we acquired a signal at rest and then

extracted ICG periods with almost no noise. This sample

has been duplicated to obtain a signal which has been

decomposed in the frequency domain. Then, we removed

all the frequencies different from the fundamental frequency

associated to the period and its harmonics, and reconstructed

a synthesized ICG signal of 20s duration. The simulated

signal has therefore all the components of a real signal, but

is not noisy at all (see Fig. 2).

Similarly as in [6], we simulated:

• the noise-related breathing and movement of small

amplitude from compositions of sinusoids of different

frequencies (respectively lower and higher than heart

rate),
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Fig. 2. Simulated impedance signal and the modulus of its Fourier
transform

• the acquisition noise with a Gaussian white noise with

various variances to model different levels of noise.

In these circumstances, we tested our algorithms with

different types of noise by extracting performances in terms

of Signal to Noise Ratio expressed in decibel (SNR dB) and

speed of adaptation.

IV. EXPERIMENTS AND RESULTS

A. Simulations

The simulated ICG signal has a sampling frequency of 1

kHz, an amplitude of 0.16 and the reference heart rate is

1.13 Hz (about 68 bpm). Regarding noise, we tested a wide

range of types and amplitudes of noise. Firstly, the amplitude

of noise varies to obtain SNR dB from -10 dB to 10 dB.

Secondly, the type of noise can be :

(a) either a Gaussian white noise (variance varies from

2.6 × 10−4 to 2.6 × 10−2),

(b) a Gaussian white noise (variance varies from 4.9 ×
10−5 to 4.5× 10−3) combined with 4 to 8 sinusoids whose

frequency is below the heart rate (frequency is around 0.33

Hz and total amplitude varies from 0.05 to 0.75),

(c) or a Gaussian white noise (variance varies from 2.7×
10−5 to 2.6× 10−3) combined with 4 to 8 sinusoids whose

frequency is below the heart rate (frequency is around 0.33

Hz and total amplitude varies from 0.035 to 0.43) and others

4 to 8 sinusoids whose frequency is higher (frequency is

around 1.3 Hz and total amplitude varies from 0.06 to 0.72).

In the (b) and (c) cases, the sum of sinusoids which

have low frequencies in comparison to heart rate, simulates

the ventilation while the sum of sinusoids which have high

frequencies simulate the movement artifact.

The tested algorithms are the EA, classically com-

puted on ten cardiac periods (EA10), the original SFLC
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(a) Simulated Z before and after being noised.
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(b) Z filtered by EA.
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(c) Z filtered by SFLC LMS-based.
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(d) Z filtered by SFLC RLS-based.

Fig. 3. Example of filtering on a simulated impedance signal noised by a
combination of sin waves and Gaussian white noise with a SNR of 0 dB.
(a) is the simulated Z before and after being noised, (b), (c) and (d) are
the result after filtering with EA10, SFLC LMS-based with H = 12 and
µ = 0.005, and SFLC RLS-based with H = 9 and λ = 0.9997

LMS-based algorithm and the new SFLC RLS-based

algorithm. We have tested many combinations of pa-

rameters by varying the number of harmonics, H ∈
{9, 12, 15, 18, 21, 24}, and the parameters of the two algo-

rithms: µ ∈ {0.005, 0.01, 0.02, 0.05} for LMS algorithm

and λ ∈ {0.9993, 0.9994, 0.9995, 0.9996, 0.9997} for RLS

algorithm. Due to limitation of space, we only present the

best results obtained with each algorithm. Nevertheless, the

best configuration in most cases is H = 12 and µ = 0.005
for the SFLC LMS-based algorithm, and H = 9 and λ =
0.9997 for SFLC RLS-based algorithm (see Fig. 3). In any

case, SNR dB results are better using H ∈ {9, 12, 15} than

TABLE I

RESULTS IN TERMS OF SNR DB AFTER FILTERING OF SNR DB WITH EACH

TYPE OF NOISE AND ALGORITHM

SNR dB (a) (b) (c)

-10 -0.03 4.81 5.31
-6 3.93 8.26 8.79
-3 6.84 10.62 11.93

EA10 0 9.74 14.15 13.73
3 12.42 16.11 16.81
6 14.89 17.71 18.06
10 17.61 19.71 19.86

-10 12.43 2.63 1.23
-6 16.5 3.32 4.17

SFLC -3 18.97 6.18 6.92
LMS-based 0 21.88 8.67 9.71

3 24.51 11.12 12.47
6 26.62 13.65 14.87
10 29.21 17.32 17.62

-10 15.19 3.96 5.37
-6 19.42 9.91 8.23

SFLC -3 21.88 12.78 11.43
RLS-based 0 25 16.48 14.59

3 27.9 19.39 18.03
6 29.76 21.62 20.82
10 33.35 26.42 23.43

using H ∈ {18, 21, 24}, probably because the energy of the

simulated signal is mainly represented by the first harmonics.

B. Simulation Results

For each type of noise, twenty randomly noised signals

of 20s duration were created and filtered by each algorithm.

Then, the results of filtering algorithms served to calculate

the SNR dB on the last 6 seconds of each signal, in order

to evaluate the algorithm performances independent of their

rate of adaptation. Table I summarizes the performances of

algorithms in each case of noise described previously.

First, we can notice that the results of the EA method

are almost similar for the (b) and (c) cases of noise (with

sinusoids). In the case of a pure acquisition noise (Gaussian

white noise), the results are lower than those in the other

cases. An improvement of SNR dB in the (a) case could

be obtained by increasing the number of periods taking into

account in the EA. Nevertheless, the rate of adaptation will

decrease proportionally to the number of periods.

Regarding filters based SFLC, they both give excellent

results in the case of acquisition noise (case (a)) with an

advantage for the SFLC-RLS that increases the performances

around 3 dB compared to SFLC-LMS. The difference is

still more important in case of low-frequency noise (used to

model ventilation) where the SFLC-RLS usually gets better

results than the EA, while the SFLC-LMS has a slightly

lower quality of the EA. Finally, once we combine Gaussian

white noise, ventilation and movement (case (c)), the SFLC-

LMS still offers lower quality than EA and SFLC-RLS. EA

and SFLC-RLS show almost identical scores at lowest SNR

dB noises. For highest SNR dB noises, SFLC-RLS provides

the best scores. In the case of a “sinusoid” noise added to

a Gaussian white noise, the performance between SFLC-

LMS and SFLC-RLS ranges from 4 to 6 dB in the most
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(a) Simulation of change in heart rate.
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(c) Estimated dZ/dtmax.

Fig. 4. Changes in calculated Q-X systolic period and dZ/dtmax value
after a simulated change in heart rate. (a) represents the original signal ; (b)
and (c) represent the results of calculation of Q-X period and dZ/dtmax

after filtering with EA10, SFLC-LMS with H = 15 and µ = 0.005, and
SFLC-RLS with H = 15 and λ = 0.9997

complex case (case (c)) and up to 9 dB in the case of a

noise simulating acquisition noise and ventilation (case (b)).

To study the rate of adaptation of the different algorithms

to a physiological change, we simulated a change in the

heart rate from 68 bpm to 44 bpm, with a systole having

the same duration and a diastole with an increased duration.

No noise is added during this test. For this experiment, we

only provide results using 15 harmonics as results obtained

with less than 15 harmonics was poor. The main reason of

these poor results is that the value of dZ/dtmax is systemat-

ically underestimated when using H = {9, 12} because the

Fourier series fails to adequately model the signal when the

systole/diastole ratio is low. In this last case, high frequencies

in comparison with heart rate appear in the signal.

Figure 4 shows simulated ICG signal (Fig. 4.a), estimated

Q-X systolic periods (Fig. 4.b) and estimated dZ/dtmax

values (Fig. 4.c). Q-X systolic periods and dZ/dtmax val-

ues are computed on the simulated signal and the signal

filtered with the different algorithms: EA10, SFLC LMS-

based (H = 15 and µ = 0.005) and SFLC RLS-based

(H = 15 and λ = 0.9997). Compared to EA, both SFLC

algorithms improve the speed of adaptation despite low µ

and high λ values. We recall that it is possible to increase

the rate of adaptation by increasing µ for SFLC-LMS and

decreasing λ for SFLC-RLS. However, increasing the rate of

adaptation also affects the quality of the estimation as both

algorithms become less stable.

V. CONCLUSION AND PERSPECTIVES

In this paper, we discussed the influence of adaptive algo-

rithms used in the SFLC filter: SFLC-RLS filter improves the

performance of classical SFLC-LMS. In addition, it offers a

good alternative to EA as SFLC-RLS improves SNR dB in

case of Gaussian white noise and rate of adaptation perfor-

mances against EA. Results are computed for simulated ICG

signals in order to have ground truth for estimating SNR dB

for noisy and denoised signals and physiological changes.

These simulated ICG signals have been obtained from real

ICG signals.

In a more general context, this study demonstrates that it

is possible to improve the performance of SFLC in terms

of SNR dB or rate of adaptation while keeping its overall

structure. This may be done in different ways: finding other

adaptive algorithms and using more pertinent reference in-

formation than R-R periods. Pertinent reference information

may be improved by using information about the structure of

the cardiac cycle like the durations of systole and diastole.

Recently, these durations estimated using phonocardiography

have been used in a modified SFLC [5]. Therefore, it could

be hypothesized that this last approach could be further

improved by RLS algorithm. However, ICG and phonocar-

diography signals are both affected by body movements ;

then, another reference signal than phonocardiography has to

be used, especially when the purpose is to filter ICG signal

noised by body movements.
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