
  

  

Abstract— We present a simple scheme for denoising non-
stationary biomechanical signals with the aim of accurately 
estimating their second derivative (acceleration). The method is 
based on filtering in fractional Fourier domains using well-
known low-pass filters in a way that amounts to a time-varying 
cut-off threshold. The resulting algorithm is linear and its 
design is facilitated by the relationship between the fractional 
Fourier transform and joint time-frequency representations. 
The implemented filter circuit employs only three low-order 
filters while its efficiency is further supported by the low 
computational complexity of the fractional Fourier transform. 
The results demonstrate that the proposed method can denoise 
the signals effectively and is more robust against noise as 
compared to conventional low-pass filters.  

I. INTRODUCTION 
HE analysis of biomechanical signals is essential in 
understanding human motion. Of particular interest are 

the derivatives of these signals as they represent the velocity 
and acceleration of the corresponding body segments. 
However the process of computing these derivatives is not a 
straightforward task due to the fact that the acquired signals 
are contaminated by noise. Since noise is amplified during 
differentiation, a direct application of this operation to 
compute derivatives will always lead to severely distorted 
results. For this reason, noise removal must be applied prior 
to differentiation. 

Schemes for kinematic data denoising to this day have 
mainly relied on digital filtering [1]. For example, the 
second-order bi-directional Butterworth filter (BW) [2] has 
been the standard method in many studies under the implicit 
assumption that signals at hand are stationary. However, the 
frequency content of biomechanical signals may undergo 
considerable changes especially when activities that involve 
impacts are considered since there is an abrupt transition 
from the low-frequency part of the movement (aerial or 
swing phase) into higher frequencies (impact phase) and 
vice versa. Conventional filtering in the Fourier transform 
(FT) domain cannot cater for these changes, therefore, it 
either under-smoothes or over-smoothes the displacement 
data [3]. 

To filter a given non-stationary signal effectively, the 
applied cut-off threshold should follow the time evolution of 
the signal’s frequency content. The presented method, 
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originally introduced in [4], achieves this by drawing upon 
the unique relationship between the fractional Fourier 
transform (FrFT) of a signal and its time-frequency (TF) 
representation to design a time-varying cut-off threshold for 
low-pass filtering. In this paper, we illustrate the differences 
of the method from classical low-pass filtering by 
contrasting their frequency responses in the TF plane. We 
then examine its denoising performance for different types 
of filters employed in the circuit. We further study its 
robustness against noise in comparison to conventional 
filtering by means of simulations. Section II provides a 
concise overview of the theoretical background and 
describes the algorithm. In section III, experimental results 
are provided. Conclusions are finally drawn in section IV. 

II. PRELIMINARIES 

A. Theoretical Background 
 

The ath-order fractional Fourier transform of the signal s(t) 
may be defined for 0<|a|<2 as [5]: 

 
             ( ) ( , ) ( )a a a as t B t t s t dt= ∫                      (1) 
 
where Ba(ta,t) represents the kernel of the FrFT, 
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where φ=aπ/2. Some essential properties of the FrFT are 
compactly provided as follows:  
(i) The transformation is linear, 
(ii) The transformation is additive in index (i.e. the a2th-

order FrFT of the signal sa1(t a1) is sa1+ a2(t a1+ a2), 
(iii) so(to)=s(t) and s1(t1)=S(f),  
where S(f) is the FT of the signal. The FrFT is a 
generalization of the FT and converts the signal from the 
time domain to the ath fractional domain, ta. 

Another significant property of the FrFT is its relationship 
with TF representations [6], [7]. A fundamental TF 
representation is the Wigner distribution (WD). If s(t) is the 
signal then its WD can be expressed as: 
 

    2( , ) ( ) ( )2 2
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Fig. 1 Rotational effect of the FrFT in the TF plane. 

 
 

where τ denotes the time lag. The WD of the ath order FrFT 
of a signal is expressed in a rotated system of reference as 
compared to the original time and frequency axes. The new 
axes correspond to the fractional time ta and the fractional 
frequency ta+1 (Fig.1). As an example, in relation to property 
(iii) listed above, the FrFT of order 1, i.e. the classical FT, 
rotates the axes by 90 degrees. 

 

B. Description of the algorithm 
 

The rotational effect of the FrFT on the WD has an 
important consequence; the integral projection of the WD of 
the original signal onto the oblique axis ta equals the squared 
magnitude of the ath-order FrFT of the signal [5]. For 
example, when a=1, this projection is the power spectral 
density of the signal. Equally, the cutoff frequency threshold 
of a Fourier-based low-pass filter may be visualized in the 
TF plane as a straight line parallel to the time axis (Fig. 2b).  

By generalizing the concept of Fourier filtering to arbitrary 
fractional domains one has the flexibility to retain TF strips 
not necessarily parallel to the time axis. Furthermore, if this 
operation is successively applied then TF areas of different 
shapes can easily be singled out [8].  

The proposed scheme consists of two distinct steps. The 
first is to determine a suitable time-variant cut-off frequency, 
and the second is to implement the corresponding low-pass 
filter by operating in consecutive fractional domains. The 
design of the time-variant cutoff threshold is greatly 
facilitated in the TF plane. Based on previous studies of 
impact signals [3], it was observed that the filtering 
boundary should extend toward higher frequencies in the 
impact region to capture the higher frequencies induced by 
the impact event, while a low cutoff is suitable at all other 
times. The simplest possible boundary that satisfies the 
above conditions is the one shown in Fig.2a. As opposed to 
conventional filtering where a single cutoff frequency is 
applied to the whole signal (Fig.2b), Fig.2a clearly provides 
a more appropriate threshold. 

 
Fig. 2. (a) Designed time-varying cutoff frequency, and (b) low-pass cutoff 
threshold corresponding to conventional filtering. The frequency response 
equals to one inside the gray areas and zero otherwise. Only the first 
quadrant of the TF plane is shown. 
 
   The presented time-varying cut-off threshold is controlled 
by four parameters. The cutoff frequency X1 corresponds to 
the aerial phases of the signal. Point tI represents the time of 
maximum acceleration, and the width W of the triangle 
refers to the duration of the impact phase. This consists of 
two separate time durations, W1 and W2, as shown in the 
figure. The height H of the triangle corresponds to the 
impact-induced expansion of the frequency content. The 
physical relevance of the above parameters to the actual 
motion enables the development of application-specific 
methods to estimate them, such as the empirical algorithms 
used in [4].  

 The simple triangle-shaped TF boundary of Fig.2a defines 
a time-varying cutoff frequency threshold with a low-pass 
filtering effect – if low-pass filters are used in the three 
domains determined by the three sides of the triangle. These 
are the ordinary frequency domain f (=t1), and the two 
fractional ones, ta1 and ta2, which are perpendicular to the 
right and left sides of the triangle, respectively. The 
intersections of the sides of the triangle with the specified 
axes ta1 and ta2 provide the low-pass cutoff values for each 
fractional domain. 

To determine the appropriate fractional domains in which 
to filter, as well as the necessary cutoff values, we exploit 
the geometry of the designed boundary. Based on the values 
of the parameters H, W1, W2, tI, and X1 these can be 
calculated as follows (Fig. 3):  

1cos111
arctan901 φφ waXand

w
h =−= ⎟
⎠

⎞
⎜
⎝

⎛
,                 (4) 

where w1 = W1/Ts and h = H/Fs, with Ts the sampling 
period and Fs the frequency step. Similarly, we obtain 
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where w2 = W2/Ts. Having determined the required 
fractional orders and cutoffs one can design suitable 
multiplicative functions to carry on with the filtering, i.e. in 
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the ta1 domain a function ga1(ta1) would be multiplied with 
sa1(ta1), then the result would be transformed into the ta2 
domain and multiplied with a function ga2(ta2), followed by a 
final FrFT of the result back to the time domain t. 
Alternatively, one can transform the signal into the (a1-1)th 
domain and convolve with ga1-1(ta1-1), where ga1(ta1) is the FT 
of ga1-1(ta1-1), and proceed similarly for the second domain. 
The latter approach allows us to choose from a wide range of 
available well-studied low-pass filters. The overall filter 
circuit is shown in Fig.4. 
 

 
Fig. 3. The two fractional domains in which low-pass filtering takes place, 
and the corresponding cutoff thresholds. 
  

 
Fig. 4. Block diagram of the proposed filter circuit. 

III. EXPERIMENTAL RESULTS 
The test signal employed here is the displacement data 

provided by Dowling [9], for which the separately measured 
acceleration )(tα  is also available for comparisons. The 
motion involved a horizontally rotating pendulum that 
swung forward until it collided with a non-rigid barrier and 
then bounced back. The sampling rate was 512 Hz. The 
displacement signal was extrapolated on either edge to 
compensate for end-point distortions. Forward and reverse 
pass filtering was used to avoid time-shift distortions. The 
values for the parameters of the triangle were determined 
empirically [4] as: X1 = 12 Hz, W1 =0.111s, W2 = 0.111s, 
and H = 36 Hz. The accelerations )(ˆ tα were computed using 
the second-order forward differences of the filtered signals. 

The first experiment involved different types of popular 
low-pass filters, such as the Butterworth, Chebyshev (type I 
and II), and elliptical, to assess their effect on the result and 
their suitability for the filter circuit of Fig.4. Iterative 

calculations determined filter orders, as well as passband and 
stopband ripple allowances. The iterations aimed at 
minimizing an error function combining the RMS and 
absolute peak (AP) errors – at equal weights – between the 
derived and the reference accelerations. AP errors were 

calculated as )()()(ˆ
ItItIt ααα ⎟

⎠
⎞⎜

⎝
⎛ − . The results 

indicated that the Butterworth filter was most suitable for 
use with the presented scheme achieving RMS error equal to 
14.5 and AP error equal to 0.002. Next was the elliptical 
filter with RMS error equal to 15.5 and AP error equal to 
0.001. The RMS errors obtained for the Chebyshev type I 
and II filters were 15.8 and 19.9, respectively. The AP errors 
for the same filters were 0.002 and 0.012, respectively. The 
higher performance of the Butterworth filter can mainly be 
attributed to its smooth roll-off, which compensates for the 
sharp angles of the triangular boundary. 

In the second experiment we examine the robustness of 
the overall scheme against noise. To this end, different levels 
of white Gaussian noise were added to the signal. The levels 
of noise were measured in terms of the signal-to-noise ratio 
(SNR). However, it should be noted that the signal already 
contained noise and no assumptions were made about its 
statistics. Table I presents the RMS and AP errors achieved 
after denoising with the presented scheme. For comparison, 
results obtained using a conventional Butterworth filter – a 
popular choice in Biomechanics – are also presented. The 
cutoff frequency of this filter, as well as its order, was 
determined so that the combined RMS and AP error was 
minimized. The listed RMS and AP errors are averages over 
100 realizations of the noisy inputs.  

The low-pass nature of the proposed scheme implies that 
noise lying below the cutoff frequency X1 cannot be 
eliminated. Thus, there is a limit with respect to the 
minimum level of noise that the method can deal with. For 
the signal at hand, this was found to be equal to 40 dB SNR 
(Fig. 5). However, the time-varying cutoff threshold can 
protect the signal much more effectively than any 
conventional low-pass filter. To focus on the impact phase in 
particular (which consists of frequencies well above the X1 
value), we experimented with added noise of colored nature, 
i.e. noise residing above X1. The results from this experiment 
are presented in Table II. As expected, the scheme could 
now cope with noise down to 0 dB SNR.  

IV. DISCUSSION 
A simple filter circuit based on the concept of repeated FrFT 
filtering has been presented for the effective denoising of 
biomechanical impact signals. The TF visualization of the 
designed time-varying cutoff threshold shows that the 
circuit’s frequency response is appropriate for the treatment 
of signals with distinct non-stationarities, as it caters for the 
temporal evolution of their spectrum. The shape of the 
designed cutoff was also found beneficial in protecting the 
signal against noise, as opposed to the flat cutoff frequency 
of conventional methods. It was also shown here that the 
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Butterworth filter is a more suitable choice for use in the 
presented circuit as compared to other well-known filters. 

Our experimental results indicate that the proposed filter 
can efficiently remove noise from biomechanical impact 
data while preserving the higher frequencies attributed to the 
impact phase. The presented method could also be useful in 
a wide range of application areas, where signals with non-
stationary characteristics are considered. It should also be 
stressed that the above advantages come at a very low 
computational cost, since the complexity of the FrFT is 
O(NlogN) [10], same as that of the classical Fourier 
transform. 
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(a) 

 
(b) 

Fig. 5. Calculated acceleration after applying: (a) the proposed filter circuit 
(solid line) with added white noise of SNR = 40dB, and (b) the Butterworth 
digital low-pass filter (solid line) at the same SNR level. The reference 
acceleration measured by accelerometers is also shown (dotted lines).  

 
 

 
 

TABLE I 
RMS AND PEAK ERRORS OF THE CALCULATED ACCELERATIONS CORRESPONDING TO DIFFERENT LEVELS OF ADDED WHITE NOISE FOR DIFFERENT SNR VALUES 

DENOISED WITH THE PRESENTED FILTER CIRCUIT (USING BUTTERWORTH FILTERS) AND CONVENTIONAL LOW-PASS FILTERING 
 

 
 
 

TABLE II 
RMS AND PEAK ERRORS OF THE CALCULATED ACCELERATIONS CORRESPONDING TO DIFFERENT LEVELS OF ADDED NOISE ABOVE X1 WITH DIFFERENT SNR 

VALUES DENOISED WITH THE PRESENTED FILTER CIRCUIT (USING BUTTERWORTH FILTERS) AND CONVENTIONAL LOW-PASS FILTERING 
 

 

                SNR(dB)           
Method 100 50 40 30 20 10 0 

Proposed 
RMSE 13.76 13.76 15.34 15.77 19.06 30.87 41.66 

Peak (%) 2.96 2.96 6.63 11.20 17.60 24.70 35.40 
Conventional 
LP filtering 

RMSE 34.70 34.61 34.21 34.92 43.16 64.65 163.13 
Peak (%) 9.91 10.33 15.36 29.15 42.75 47.80 63.68 

                SNR(dB)           
Method 100 50 10 0 -10 -20 -30 

Proposed 
RMSE 13.76 13.76 13.99 14.59 17. 81 21.91 28.27 

Peak (%) 2.96 2.96 3.08 9.51 14.07 15.82 34.04 
Conventional 
LP filtering 

RMSE 32.09 32.09 32.22 33.65 35.16 34.77 65.07 
Peak (%) 8.08 8.08 8.88 16.38 29.42 43.10 45.15 
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