
  

  

Abstract— Identifying candidate genes/proteins involved in 

human disease specific molecular pathways or networks has 

been a primary focus of biomedical research. Although node 

ranking and graph clustering methods can help identify 

localized topological properties in a network, it remains unclear 

how the results should be interpreted in biological functional 

context in systems-level. In complex biomolecular interaction 

networks, biomolecular entities may not have absolute ranks or 

clear cluster boundary among them. We presented Ant Colony 

Optimization Reordering (ACOR) method to examine emerging 

network properties. The task of reordering nodes is represented 

as the problem of finding optimal density distribution of “ant 

colony” on all nodes of the network. We applied ACOR method 

to re-analyze a yeast protein-protein interaction (PPI) network 

annotated with functional information (i.e., lethality), which 

revealed intriguing systems-level functional features. 

I. INTRODUCTION 

he identification of candidate molecular biomarkers [2]  

or drug targets [3] involved in human diseases has been 

a primary focus of biomedical research. Conventional 

methods involve finding disease-associated genes through 

genetic linkage or mutation analysis. Experimental and 

computational techniques to analyze a gene/protein’s 

sequence using phylogenic, biochemical, and molecular 

biology methods have led to profound understandings of the 

functions of genes/proteins based on their sequences and 

structure. In recent years, genomics, proteomics, and systems 

biology techniques have led to an influx of new molecular 

interaction data. The collective study of all molecular entities 

and their relationships - network biology - has led to new 

ways to characterizing biological functions of genes/proteins 

in their molecular interaction network and pathway context. 

For example, Jeong et al. were among the first to investigate 

two key molecular network concepts, centrality and lethality, 

in a yeast protein-protein interaction (PPI) network [1]. In 
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this work, centrality, the topological connectedness of 

proteins to other interaction partners in a network, was 

applied to study lethality, a phenotype that indicates whether 

yeast could survive when the gene is knocked out. Studies 

that followed have discovered many important associations 

between topological and functional properties of PPI 

networks. For a recent review, refer to [4].  

An increasingly popular biomolecular network analysis 

technique, known as node ranking, aims to find 

genes/proteins based on the gene/protein’s network 

topological properties either entirely or partially. Weston et 

al. introduced a protein ranking algorithm (RankProp), 

which studied all similarity relationships among proteins in a 

sequence database by performing a diffusion operation on a 

pre-computed, weighted network [5]. Chen et al. developed 

a computational method to prioritize disease-related proteins 

in Nearest Neighbor Expanded (NNE) subnetworks and PPI-

data-quality-adjusted protein ranking score [6]. Inspired by 

the PageRank algorithm of the Google search engine, 

Morrison et al. developed a gene ranking algorithm 

(GeneRank), which combined gene expression information 

with a network structure derived from GO co-annotations or 

correlated co-expression profiles [7]. Wang et al. presented a 

hybrid approach called HykGene, in which they selected 

gene biomarkers for phenotype classifications from 

microarray gene expression experiments by integrating gene 

ranking and hierarchical clustering analysis [8]. Ma et al. 

also developed a new approach called CGI for prioritizing 

genes in a disease by combining gene expression profiles and 

PPI data [9]. These methods enable biomedical researchers 

to filter hundreds of genes or proteins often derived from 

high-throughput experiments and help them hypothesize on 

which gene/protein may be used as biomarkers or therapeutic 

drug targets based on newly network biology knowledge. 

Another task in biomolecular network analysis is to 

identify functional modules.  Many types of graph clustering 

methods have been proposed to solve this problem in 

network biology. One simple method for graph clustering is 

to search for minimal cuts in a graph by using the maximum 

flow algorithm [10]. Conventional hierarchical clustering 

has been popular for partitioning large graphs that represent 

biomolecular interaction networks [11]. Spectral graph 

clustering can also be performed, by computing the 

eigenvectors corresponding to the second-smallest 

eigenvalue of the normalized Laplacian or an eigenvector of 

another matrix that represents the graph structure [11, 12]. 
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Heuristic methods such as spring-force or other energy 

models for network visualization can also be applied to 

graph clustering if the nodes in a network graph is within 

limits of computational resources allocated [11]. Resistor 

network of circuits that model each edge as a unit resistor 

may also be used to cluster the nodes based on the voltage 

potential differences by calculating the potentials at all of the 

nodes [13]. Recently, a robust Markov clustering algorithm 

based on flow simulation, a type of random walk methods, 

has also been proposed [14]. These graph clustering 

algorithms are perhaps related: cut-based methods are a 

special type of spectral graph partitioning methods, which in 

turn are related to random walks that can model the behavior 

of circuit networks and determine betweenness network 

topological features [15]. 

While node ranking and graph clustering methods can 

help identify localized network topological features, it 

remains unclear how the results should be interpreted in 

biological functional context. Complex biomolecular 

interaction networks are often characterized by small-world 

and scale-free properties, which suggest that bimolecular 

entities may not have “absolute ranks” or “clear cluster 

boundary” among them. Could there be more emerging 

biomolecular network properties for us to discover? 

In this paper, we present a computational framework 

based on Ant Colony Optimization (ACO) [16] to reorder 

network nodes. The task of reordering nodes is represented 

as the problem of finding optimal density distribution of “ant 

colony” on all nodes of the network. This new framework - 

ACO Reordering (ACOR) - also enables us to examine 

emerging (globalized) properties in a biomolecular 

interaction network. We applied the ACOR method to re-

analyze a yeast PPI data annotated with lethality information 

in [1]. Our results revealed intriguing systems-level 

functional features not previously reported. 

II. METHOD 

General ant colony optimization methods have been used 

to find shortest path in a graph or network. Here, we 

represent the problem of finding highly relevant nodes in a 

network as one in which simulated ants (s-ant) roam all 

possible network paths iteratively. By designing different 

strategies Fi of s-ants in each step “walking” in a network, 

the iteration process can be manipulated to get the density 

distribution s of s-ants crowding on each node, as shown in 

(1). According to this density distribution s, the ranked 

adjacency matrix of the network will be shown as a map to 

reveal the system-level feature of the network. 
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si : i th step density distribution of s-ants crowding on each 
node. 

Fi : Strategies of s-ants for i th step taken to walk in a 
network. 

P : Adjacency Matrix of the network (in spite of directed vs. 
undirected or un-weighted vs. weighted). 

Mi : Matrix determined by both the network features P under 
analysis (including topology and function information) 
and the marks signed by s-ants. 

s0 = (1/n, 1/n,…, 1/n)
T
 : to describe the equivalence of each 

node in the network.  
ci : Rank vector according to i th step density distribution si.  
Pi+1 = Pi (ci, ci) : Ranked Adjacency Matrix of the network 

with rank ci . 

In a simple case of the proposed scheme, s-ants never sign 

a mark on the network, and Mi is only determined by the 

network, which means it is invariable. Equation (1) can be 

reduced to the following: 
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 (2) 

For further simplification, s-ants can be modeled by the 

constraint of maintaining a constant walking strategy, and (2) 

can be reduced to the following: 
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Let P denote the adjacency matrix of the network 

(regardless of directed/undirected types or un-

weighted/weighted types). In the event that s-ants fail to 

populate, M can be obtained by (4) below: 
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We proved that the final density distribution sN has a 

convergent limit as described by (5). 
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If s-ants populate quickly, M can be simply evaluated as 

M = P. In this situation, a convergent property of this 

 
Fig. 1.  Yeast PPI network (Protein: 1870; Interaction: 2277) layout were 

generated by Cytoscape. The main sub-network contains 1458 proteins 

and 1993 interactions. Other separated sub-networks are all shown in the 

upper left small windows. All the yeast PPI data and lethality data were 

provided by Dr. H. Jeong [1]. 
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algorithm cannot be assured for all kinds of networks. In our 

experiments, it seems to be related with scale-free feature[1]. 

III.  RESULTS 

First, we define Lethality Score (LS) for each protein 

(node) as in (6). 
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Then define LS for each protein interaction (edge) as in (7). 
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The yeast PPI network in [1] was redrawn in Fig. 1. 

Visually, it’s difficult to find how centrality relates to 

lethality. Three different types of subnetworks (lethal, 

unknown, and non-lethal) are organized around the global 

network and difficult to be visually separated. 

There are two modes for our ACOR algorithm. One is 

called un-populated mode, which is governed by (3) with M 

taking as (4), and another one is called populated mode, 

which is also governed by (3) while with M = P. ACOR in 

un-populated mode, where the s-ant population never 

changes for each iteration, is similar to the Google PageRank 

algorithm as seen in (4-5). These results can be compared 

with those in populated mode, where the s-ant population 

increases very rapidly, and it will accelerate the propagation 

of local topological information intuitively. That is why 

populated mode ACOR can reveal globalized network 

features, while un-populated mode ACOR can only show 

localized network properties. For adjacency matrix of 

network P = {pij}, pij = 0 if node i do not connect with node 

j, while pij = 1 (when functional information in (6) was not 

used) or pij = LS (ei,j) (when functional information in (6) 

was used) if node i connect with node j. 

By using ACOR in un-populated mode, the reordered 

adjacency matrices of the yeast PPI network without and 

 
Figure 2.  Yeast PPI network adjacency matrix reordered by ACOR in 

un-populated mode (Equation (3) with M as (4), n=256). Functional 

information LS (ei,j) for each edge was not used in reordering. 

 
Figure 3.  Yeast PPI network adjacency matrix reordered by ACOR in 

un-populated mode (Equation (3) with M taking as (4), n=256). 

Functional information LS (ei,j) for each edge was used in reordering. 

 
Figure 4.  Yeast PPI network adjacency matrix reordered by ACOR in 

populated mode (Equation (3) with M = P, n=128). Functional 

information LS (ei,j) for each edge was not used in reordering. 

 
Figure 5.  Yeast PPI network adjacency matrix reordered by ACOR in 

populated mode (Equation (3) with M = P, n=128). Functional 

information LS (ei,j) for each edge was used in reordering. 
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with utilizing functional information (i.e., lethality) are 

shown in Fig. 2 and Fig. 3, respectively. Although the result 

from Fig. 2 only utilized topological information and showed 

interesting pattern, there is little concordance with lethality 

information. Neither are the results from Fig. 3.  

In Fig. 4 and Fig.5, ACOR in populated mode reordered 

adjacency matrices of the yeast PPI network without and 

with utilizing functional information are shown, respectively. 

Here, we can see some distinct patterns. Comparing Fig. 4 

with Fig. 5, different subnetworks (according to lethality 

score) in Fig. 5 were organized in “layers”, which is 

characteristics of fractals (multi-scale self-similarity). To 

show this pattern more clearly, in Fig. 6, we separated 

subnetworks according to lethality scores for their 

interactions. We can see how similar those subnetworks are. 

Node degree distributions for the whole PPI network and 

each subnetwork are also shown (Fig. 7). We could confirm 

that these subnetworks all obey power-law distribution - 

characteristics of scale-free networks. 

IV. CONCLUSION 

We developed a new ACOR framework that can 

efficiently extract network topological features while 

identifying global structures correlated with biomolecular 

functions as a whole. In complex biomolecular interaction 

networks without clear clusters or absolute ranks, our 

method can assign each node in PPI network a “relative 

rank” in “blurred clusters”. The system-level functional 

patterns in yeast PPI networks are closely related to scale-

free network features. We believe that this method could 

help unravel high-level “orderness” ultimately interpretable 

in biological contexts and represents a brand-new type of 

solution for future network biology studies. 
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Figure 6. Four different subnetworks involved in Fig. 5, according to the 

interaction lethality (LS =0.2; LS = 0.4; LS = 0.6; and LS >=0.8) 

 
Figure 7. Node degree distribution for the whole yeast PPI network and 

four different subnetworks shown in Fig. 6. 
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