
  

  

Abstract—Web Services and Grid-enabled scientific 
workflows are of paramount importance for the realization of 
efficient and secure knowledge discovery scenarios. This paper 
presents a Grid-enabled Genotype-to-Phenotype discovery 
scenario (GG2P), which is realized by a respective scientific 
workflow. GG2P supports the seamless integration of SNP 
genotype data sources, and the discovery of indicative and 
predictive genotype-to-phenotype association models – all 
wrapped around custom-made Web Services. GG2P is applied 
on a whole-genome SNP-genotyping experiment (breast cancer 
vs. normal/control phenotypes). A set of about 100 indicative 
SNPs are induced with very high classification performance. 
The biological relevance of the findings is supported by the 
relevant literature. 

I. INTRODUCTION 
With the completion of the Human Genome Project and the 
entrance to the post-genomics era, associated technology 
developments have accelerated the process of analyzing 
entire genomes. In turn this has catalyzed the major 
development of predictive, preventive and personalized 
medicine, which will impact on clinical practice. In 
particular, it has provided access to the extensive human 
genome variability in the form of SNPs (single nucleotide 
polymorphisms), some of which predispose to disease. This 
knowledge introduces the prospect of clinical prognosis 
based on identification of susceptibility genes. It is likely 
that a predictive medicine will gradually emerge, capable of 
determining a probabilistic ‘future health history' for each 
individual. As individuals maintain unique genotype 
information, inter-individual genome variation plays a major 
role in differential development and disease processes. 
Background genetic effects (modifier genes), epitasis, 
somatic variation, and environmental factors all complicate 
the situation. Strategies do, however, now exist to study 
complex disease genetics. The raised needs concern on one 
hand, the creation and effective integration of ever-larger 
datasets, and on the other, the processing of these datasets to 
induce reliable knowledge. At present, too little is known 
about which SNPs to type for complex and multi-factorial 
diseases, because varying linkage disequilibrium patterns in 
different populations make it unsuitable for unsorted patient 
samples. In this diverse and semantically heterogeneous 
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clinico-genetics environment, clinical data-processing and 
decision-making processes become more demanding in 
terms of their domain of reference, i.e., population-oriented 
and lifetime clinical profiles enriched by evidential 
genomic/genetic information. Moreover, health prevention- a 
key-issue for reliable and effective medical care, and the 
related epidemiological studies become more dependent on 
information transfer and exchange. The ability of healthcare 
professionals to be informed, to consider and to adapt fast to 
the potential changes and advances of the medical practice is 
of crucial importance for future decision-making. Therefore, 
methodologies, systems and tools to extend the capacity of 
the unaided mind are required, to couple the details of 
knowledge about a problem with the relevant knowledge 
from combined evidenced clinical and genomic knowledge 
repositories. The use of genetic data in addition to clinical 
symptoms for medical decision-making will contribute to the 
expected, and continued shift towards evidence-based 
clinico-genomic medicine. Such a visionary objective can 
only be realized with an enormous investment into: (i) the 
creation of standardized databases that combine clinical 
history, symptoms and signs, laboratory and procedural 
results and genetic data in raw and processed formats; and 
(ii) the extraction of knowledge out of the respective 
databases, their expert interpretation and matching against 
existing computational models; and (iii) the incorporation 
such knowledge into standardized clinical guidelines where 
feasible. 

Knowledge Discovery and Data Mining are the most 
prominent approaches to automated scientific discovery. 
Requirements for biological data management are very 
demanding due to size and complexity, quality properties 
(missing values or noisy data are frequent), and inherent 
domain heterogeneity. These new requirements have given 
rise to modern software engineering methodologies and 
tools, such as Grid (Foster 2003) and Web Services (Curbera 
et al 2002). These new technologies aim to provide the 
means for building sound data integration, management and 
processing frameworks. 

In this paper we present an integrated scenario to support 
seamless access and analysis of SNP genotype data, as 
produced by relative SNP genotyping platforms. Effort is 
cast toward the discovery of reliable and predictive multi-
SNP profiles being able to distinguish between different 
disease phenotypes. The employed data-mining technique is 
founded on a novel feature selection algorithm. The whole 
approach is realized in a Grid-enabled scientific workflow 
editor and enactment environment, and presents an 
integrated scenario aiming to support Grid-enabled 
Genotype-to-Phenotype (GG2P) association studies. In 
particular, GG2P induce discriminant and predictive SNP-
phenotype association models linking the results with 
Ensembl, a state-of-the-art genome browser. 
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II. ENABLING TECHNOLOGY 
Data mining has successfully provided solutions for 

finding information from data in many fields including 
bioinformatics. Many problems in science and industry have 
been addressed by data mining methods and algorithms such 
as clustering, classification, association rules and feature 
selection. In particular, feature selection is a common 
technique for gene/SNP feature reduction and selection in 
bioinformatics. The main idea is to choose a subset of input 
features by eliminating those that exhibit limited predictive 
performance. Feature selection can significantly improve the 
comprehensibility of the resulted classifier models and 
support the development of models that generalizes better to 
unseen cases. 

The heterogeneity and scale of clinico-genetic data raises 
the demand for: (a) seamless access and integration of 
relevant information and data sources, and (b) availability of 
powerful and reliable data analysis operations, tools and 
services. The challenge calls for the utilization and 
appropriate customization of high performing Grid-enabled 
infrastructures and Web technology - as presented by Web 
Services, and Scientific Workflows environments. Smooth 
harmonization of these technologies and flexible 
orchestration of services present a promising approach for 
the support of integrated genotype-to-phenotype (G2P) 
association studies. 

Grid technology. Grid computing (Foster 2003) is a 
general term used to describe both hardware and software 
infrastructure that provides dependable, consistent, 
pervasive, and inexpensive access to high-end computational 
capabilities. Grid has emerged as the response to the need 
for coordinated resource sharing and problem solving in 
dynamic, multi-institutional virtual organizations. Sharing 
of computers, software, data, and other resources is the 
primary concern of Grid architectures. In a modern service 
oriented architecture the Grid defines the general security 
framework (e.g. the authentication of the users and services), 
the virtual organization abstraction, the user management 
mechanisms, authorization definition and enforcement, etc. 
It provides both the computational and the data storage 
infrastructure, which is required for the seamless 
management and processing of large data sets. 

Semantic and Knowledge Grids. Semantic Grid presents a 
Grid computing approach in which information, resources 
and data processing services are employed with the use of 
semantics and respective data models. It facilitates the 
discovery, automated linkage and smooth harmonization of 
services. In a Semantic Web analogy, Semantic Grids can be 
defined as “extensions of current Grids in which information 
and services are given well-defined meaning, better enabling 
computers and people to work in cooperation” (De Route et 
al 2005). Encapsulation of Web Science and knowledge-
oriented technologies in Grid-enabled infrastructures 
represents a flexible knowledge-driven environment referred 
as the Knowledge Grid (Zhuge 2004). In their layered 
architecture organization, Knowledge Grids define and form 
an additional layer, which supports implementation of higher 
level and distributed knowledge discovery services on a 
virtual interconnected environment of shared computational 
and data analysis resources. This setting permits and 

enables: automated discovery of resources; representation, 
creation and management of statistical and data mining 
processes; and composition of existing data and processing 
resources in ‘compound services packages’ (Cannataro and 
Talia 2003). 

Web services. Web Services standards present the most 
popular and successful integration methodology approach. 
Standards support the machine-machine communication is 
performed via XML programmatic interfaces over web 
transport protocols (e.g., SOAP), which are specified using 
the Web Service Definition Language (WSDL) (Curbera et 
al 2002). These common data representation and service 
specification formats, when properly deployed, enable the 
integration of heterogeneous and geographically disparate 
software systems. Web Services enhance and support the 
development of distributed, multi-participant, and 
interoperable systems that can be utilized in the combination 
of services and their reuse as processing steps into more 
complex high level scenarios, commonly referred as 
workflows. 

Scientific workflows. Workflow Management Coalition 
defines a workflow as “the automation of a business process, 
in whole or part, during which documents, information or 
tasks are passed from one participant to another for action, 
according to a set of procedural rules”. A workflow consists 
of all the steps and the orchestration of a set of activities that 
should be executed in order to deliver an output or achieve a 
larger and sophisticated goal. In essence a workflow can be 
abstracted as a composite service, e.g. a service that is 
composed by other services that are orchestrated in order to 
perform some higher level functionality. The (potentially 
parallel) steps (tasks) that a workflow follows may exhibit 
different degrees of complexity, and are usually connected in 
a non-linear way, formulating a directed acyclic graph. A 
Workflow Management System (WMS) defines, manages 
and executes workflows through the execution of software 
that is driven by a computer representation of the workflow 
logic (Deelman et al 2006, Fox and Gannon 2006). 
Sophisticated problem-solving engages a variety of inter-
depended data analysis tasks and analytical tools, e.g., pre-
processing and re-formatting of heterogeneous datasets into 
formats suitable as input to other analytic process. In 
addition, the computational environment itself is 
heterogeneous, ranging from supercomputers to clusters of 
personal computers. So, there is a need to model and 
explicitly define the engaged computational nodes and 
networks. Scientific workflows are introduced as an 
amalgamation of scientific problem-solving and traditional 
workflow techniques. They have been proposed as a 
mechanism for coordinating processes, tools, and people for 
scientific problem solving purposes and aim to support 
“coarse-granularity, long-lived, complex, heterogeneous, 
scientific computations” (Singh and Vouk 1997). 

To assist the bioinformatics community in building 
complex scientific workflows, and in the context of the EU 
FP6 integrated project (www.eu-acgt.org), the ACGT 
Workflow Editor and Enactment Environment (WEEE) have 
been designed and developed (Sfakianakis et al 2009). 
WEEE is a Web-based graphical tool that allows users to 
combine different Web Services into complex workflows. It 
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supports searching and browsing of a Web Services 
repository and of respective data sources, as well as their 
orchestration and composition through an intuitive and user 
friendly graphical interface. Created workflows can be 
stored in user spaces and can be later retrieved and edited. 
So, new versions of them can be easily produced. Designed 
workflows can be executed in a remote machine or even in a 
cluster of machines in the Grid. In this way there is no 
burden imposed on the user’s local machine since the 
majority of computation and data transfer of the intermediate 
results are take place in the Grid where the services are 
executed. WEEE is based on the BPEL (Arkin et al 2005) 
workflow standard and supports the BPEL representation of 
complex bioinformatics workflows. In WEEE a generic data 
protection framework is used, which is based on a technical 
security infrastructure as well as on organizational measures 
(Claerhout et al., 2008). The ACGT Grid environment is 
supported by the Gridge Globus-comliant toolkit (www. 
gridge.org; www.globus.org; Pukacki et al., 2006). 

III. THE GG2P SCENARIO 
An SNP is a single base substitution of one nucleotide 

with another. With high-throughput SNP genotyping 
platforms massive genotyping data may be produced for 
individual samples (i.e., diseased, treated or, control). It is 
known that a category of diseases are associated to a single 
SNP or gene (also known as monogenic diseases). In 
general, a single SNP or gene is not informative because a 
disease may be caused by completely different modifications 
of alternative pathways in which each SNP makes only a 
small contribution. Most of the complex diseases, including 
cancer, are characterized by groups of genes with a number 
of susceptible genes interacting with each other. It’s 
important to search for multiple SNP profiles - among a 
huge number of them, that not only associate with a disease 
but exhibit a high discrimination power between different 
phenotypic classes. The GG2P scenario aims exactly 
towards this direction with the relevant literature started to 
include similar approaches (Nunkesser et al 2007, Zhou and 
Wang 2007, Schwender et al 2008). The steps followed by 
the corresponding scientific workflow are presented and 
described in the sequel. 

A. Data access and retrieval 
Using Web Services from the European Bioinformatics 

Institute’s (EBI) repository (http://www.ebi.ac.uk/Tools/ 
webservices/). Access was facilitated by ArrayExpress web 
service. The dataset used in this study refers to a genotyping 
experiment of 78 sample hybridizations performed on the 
Affymetrix GeneChip Human Mapping 10K Array Xba 131 
(Mapping10K_Xba131 11560 SNPs) array design. The raw 
data file includes 78 transformed and/or normalized data 
files. The hybridized samples concern breast cancer (BRCA) 
and normal (CTRL) cases. More information about the 
dataset can be found at (Richardson et al 2006). Note that 
GG2P could be easily customized to work with other 
experiments and respective datasets. 

B. Data mediation 
The response of ArrayExpress web service is an XML file 

with links to phenotypic (‘sdrf’) and genotype (‘fgem’) tags 
in the file. We utilized a special parser to extract the needed 
information from the XML file. The ‘samples’ tag identifies 
the number of included samples/hybridizations, and the 
‘sdrf’ tag points to the respective file with description of 
each hybridization. From the ‘fgem’ tag we may identify and 
download the SNP profiles of the respective experiment’s 
samples. It is essential to align phenotypic classes with the 
respective samples’/hybridizations’ genotype data, and form 
a unified dataset to be analyzed. We employ a natural-
language mechanism, enabled by specific ontologies and 
controlled vocabularies (Potamias et al 2005). The result is a 
homogenized and appropriately formatted file (with 
phenotype class annotations and respective genotype data), 
which serves as input to a specific analytical process. 

C. Data preprocessing 
Depending on the data and the data mining algorithm, the 

formed data file may need extra processing. For example, 
many algorithms can handle only nominal values. In such a 
case, and if the data comes with continuous feature values, 
we have to discretize them. Furthermore, as genotype 
profiling platforms (like Affymetrix) produce too many 
‘NoCalls’, one may be also interested to reduce these 
‘missing values’ utilizing an appropriate data pre-processing 
process. After the needed pre-processing is performed, the 
‘filtered’ dataset is transformed into the ARFF format - a de 
facto standard for machine learning, and supported by the 
Weka machine learning package (http://www.cs.waikato. 
ac.nz/ml/weka/) (Witten and Frank 2005). 

D. Data analysis 
A variety of existing data mining algorithms exists in the 

public domain (e.g., Weka, R-package/Bioconductor, 
BioMoby). Here we rely on a feature reduction and selection 
approach. Dimensionality reduction and feature selection is a 
well-known and addressed issue in machine learning and data 
mining (Guyon and Elisseeff 2003). We are interested on the 
identification of SNP-phenotypic class associations, and on 
respective discrimination/classification models. The profiles 
of these SNPs are able to distinguish between particular pre-
classified patient samples. Core operations of this process 
are implemented in the MineGene gene selection system, 
and their Web Services deployment (Potamias et al 2004, 
2006). 

IV. GG2P IN ACTION 
For the realization of GG2P scenario we used part of the 

ACGT Grid infrastructure – the Data Management System 
(DMS), the service repository and the WEEE workflow 
editing and execution environment. The DMS is a secured 
and distributed file system over the Grid. The service 
repository gives access rights as well as metadata 
information about the available services. The ACGT WEEE 
workflow editor is a Web2 BPEL-compliant application 
installed in a Grid node. The first WEEE/GG2P web service 
takes as input a query and returns an XML file with 
information about all the related to the query experiments in 
the EBI ArrayExpress repository (query: “homo sapiens” & 
“breast cancer” & “genotype” & “affymetrix” & 
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“Mapping10K_Xba131”). The second service (Mediator) 
takes as input the repository’s XML response file and creates 
the homogenized file with the clinical and genotype data. 
The generated file is stored in DMS at the user’s account. 
The next service (Discretization) discretizes and transforms 
the experiment data to arff format. Discretization service 
retrieves the data from DMS and stores the arff-formatted 
data back to the DMS. The final service implements the 
(two-valued) SNP feature selection algorithm. The service 
again retrieves data from DMS and stores the results in the 
DMS. Then, after the editor requests the results from the 
DMS, SNP annotations and links to the Ensembl genome 
browser are automatically assigned to the selected SNPs. 
Finally, an html file is formed and is used for the 
visualization of results. 

V. RESULTS AND DISCUSSION 
Affymetrix SNP genotyping platforms produce processed 

data files where, each SNP receives three different values: 
AA and BB that represent paternal or maternal 
homozygosity genotypes, respectively, and AB for 
heterozygosity ones. The ‘0’ and ‘1’ nominal values are 
assigned to the AA/BB and AB SNP feature values, 
respectively. This results into a two-valued feature 
representation space. In this setting a set of SNPs could be 
considered as an ideal discriminator between two different 
phenotypic classes if it displays the ‘0’ value for all sample 
cases in one class and the ‘1’ value for all sample cases in 
the other class. From the total of the 78 sample cases 
included in the target SNP genotyping experiment we 
excluded the ones that have more than 10% of missing 
‘NoCall’ values, resulting into a dataset of 36 BRCA and 36 
CTRL cases. For the target BRCA vs. CTRL study, the 
execution of the GG2P scientific workflow resulted into a 
set of about 100 most discriminant SNPs. With these SNPs 
the following highly performing figures are achieved: 96.2% 
accuracy, 92.2% sensitivity, 96.2% specificity, and 0.979 
ROC/AUC. 

Figure 1 visualizes just the top 24 of the most 
discriminant SNPs (the ones with the highest ranks) sorted 
by their chromosomal location. The first column shows the 
discrimination power (the rank) for each SNP (as calculated 
by MineGenes’ core feature selection process). The second 
column shows the Affymetrix code name for the probe that 
represents the respective SNP. The third column displays the 
corresponding code, namely: dbSNP (http://www. 
ncbi.nlm.nih.gov/projects/ SNP). The dbSNP - SNP 
databases, represent a widely used public-domain archive for 
a broad collection of SNPs as well as small genomic 
insertion/deletions (indels) and is hosted at the National 
Center for Biotechnology Information (NCBI). The next 
three columns display information about the genomic region 
of the respective SNP: column four the chromosomal 
location; column five the cytoband, and columns five and six 
the nucleotide allele variations for the two 
(paternal/maternal) alleles. The last column shows the 
nearest gene present in the corresponding SNP’s genomic 
physical position. All hyperlinks are automatically assigned 
to the respective items by consulting the annotation files 

provided by Affymetrix. When clicking on a specific 
cytoband one is transferred to the respective visualization 
screen of the Ensembl genome browser (www.ensembl.org). 
So, inspection of results and further investigation is enabled 
and supported. In Fig 3 one may also observe and contrast 
the SNP characteristic profile patterns between BRCA and 
CTRL cases, respectively - gray and dark shaded cells 
represent homozygosity (‘AA/BB’) and heterozygosity 
(‘AB’) genotypes, respectively.  

 

 
Fig. 1.  The induced most discriminant and highest ranked BRCA vs. CTRL 
SNPs (for the ArrayExpress E-GEOD-3743 genotyping experiment) – gray 
shaded and dark shaded cells indicate homozygosity and heterozygocity 
genotypes, respectively. It can be easily observed that LOH (Loss Of 
Heterozygosity) patterns dominate the BRCA cases 

The main observation is that the homozygosity patterns 
are dominant in the BRCA cases - a finding which is 
consistent with the Loss of Heterozygosity (LOH) situation 
in pathogenic situations. LOH in a cell represents the loss of 
regular function of one of the gene’s alleles when the other 
allele is inactive. In oncology, LOH refers to somatic 
mutations and occurs when the offspring’s functional allele 
is inactivated by the mutation. In such situations, normal 
tumor suppressor functionality is inactivated and 
tumorigenesis events are almost certain. 

We further examined the biological relevance of the 
findings, i.e., does the identified and most discriminant 
SNPs relate to LOH and breast cancer situations. Literature 
search provide us with strong evidence for that. We refer to 
just two indicative SNPs in cytobands 17p13.2 1nd 17p12 
(both highly ranked). Chromosome 17p is among the most 
frequently deleted regions in a variety of human 
malignancies including breast cancer. In (Seitz et al 2001) 
the localization of a putative tumour suppressor gene (TSG) 
at 17p13, distal to the TP53 (the most indicative tumor 
suppressor) gene, was further refined for breast carcinomas. 
It was found that 73% (37 of 51) of the breast tumors 
exhibited loss of heterozygosity (LOH) at one or more loci 
at 17p13. The allelic loss patterns of these tumours suggest 
the presence of at least seven commonly deleted regions on 
17p13. The three most frequently deleted regions were 
mapped at chromosomal location 17p13.3 - 17p13.2. 
Furthermore, the data suggest that different subsets of LOH 
in this region are associated with more aggressive tumor 
behavior. Additional evidence for the association between 
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the 17p13 genomic region and breast cancer are also 
reported in (Mao et al 2005) and (Ellsworth 2003). Similar 
findings are reported for the 17p12 region. In (Shen et al 
2000) sixty-three markers are reported that display ≥25% 
LOH, with the highest values being observed on 17p12 
(48.4% for the well, and ~87% for the poorly differentiated 
breast tumor cases). 

VI. CONCLUSIONS AND FUTURE WORK 

We presented an integrated methodology that enables the 
discovery of genotype-to-phenotype associations and 
predictive models, and supports G2P association studies. 
The methodology is realized in the context of the GG2P 
scenario being implemented with the aid of Web Services 
and Scientific Workflows and operating in a grid 
environment. In particular the ACGT (EU FP6 integrated 
project) Grid infrastructure and its WEEE workflow editing 
and enactment environment were utilized. The GG2P 
workflow was executed on an indicative SNP genotyping 
experiment (from the ArrayExpress repository) that concerns 
the hybridization breast cancer and normal/control tissue 
samples. We were able to identify about 100 indicative 
SNPs that exhibit contrasted homozygosity / heterozygosity 
profiles, and achieve highly discriminant performance 
figures for the respective phenotypic classes. The most 
highly ranked SNPs exhibit clear loss of heterozygosity 
patterns, a common situation in tumorgenesis. Literature 
searches provide strong evidence about the biological 
relevance of the findings – the respective SNP’s genomic 
regions are strongly association with characteristic breast 
cancer phenotypes. Results presented herein are cast in the 
same realm with work reported by Trégoüet et al (Trégoüet 
et al 2009) in coronary heart disease and demonstrate that 
grid technology coupled with workflow modeling and web 
services provide an effective team formation toward SNP 
and G2P discovery. 

Our future R&D plans include: experimentation with 
other public-domain genotyping experiments, and 
enrichment of GG2P and its workflow realization with other 
data-mining techniques (e.g., clustering, association rules 
mining etc). 
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