
 

 

 

  

Abstract—Follicular lymphoma (FL) is the second most 

common non-Hodgkins lymphoma in the United States. While 

the current diagnosis depends heavily on the review of H&E-

stained tissues, additional sources of information such as IHC 

are occasionally needed. Matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS) can be 

used to generate protein profiles from localized tissue regions, 

thus making it possible to relate changes in tissue histology to 

the changes in the protein signature of the tissue. It may be 

possible to determine potential biomarkers that can indicate 

disease state and prognosis based on the protein profile. This 

research aims to combine two different but related types of 

data in order to develop a unique diagnosis methodology that 

can potentially improve the accuracy of diagnosis. Preliminary 

analysis has shown promising results for distinguishing 

intrafollicle regions from the mantle and follicle zones in 

normal tissue.  

I. INTRODUCTION 

ollicular lymphoma (FL) is the second most common 

non-Hodgkin’s lymphoma in the United States, 

accounting for 35% of all adult B cell lymphomas, and 70% 

of low grade lymphomas in U.S. clinical trials. Although 

reliable clinical risk stratification tools are available for FL, 

the optimal choice of treatment continues to depend heavily 

on morphology-based histological grading. In a system 

adopted by the World Health Organization (WHO), 

follicular lymphomas are stratified into three grades 

depending on the average count of centroblasts (noncleaved 

follicular center cells) in ten, randomly selected, standard 

high-power fields (HPF) [1]. Follicular lymphomas with low 

histological grades (I and II) are considered incurable with 

currently available therapies, however, high-grade follicular 

lymphomas (Grade III) may be cured with aggressive 

chemotherapy. Currently, the inter-reader agreement 

between pathologists in grading FL is extremely low: in a 

multi-site study, the agreement among experts for the 

various grades of follicular lymphoma varied between 61% 
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and 73% [2]. These grade-related differences underscore the 

need for a precise and reproducible system for the 

histological grading of FL. 

Computer aided diagnosis tools for grading of Follicular 

Lymphoma are being developed by our group [3]. In the 

approach in [4] Hematoxylin and Eosin (H&E) and 

immunohistochemical (IHC) stained tissue images are 

morphologically analyzed to develop statistical models for 

detecting follicles and centroblasts. Research described in 

[3] is based upon this work, and constructs models used to 

describe the tissue histology in order to classify histological 

grades of FL. This research has demonstrated the potential to 

reduce errors in the classification of FL.  

While the current diagnosis heavily depends on the review 

of H&E-stained tissues, additional sources of information 

such as IHC stained images are frequently needed. In order 

to better quantify the information inherent in the tissue, we 

have used a relatively new technology called imaging mass 

spectrometry (IMS). IMS has emerged as a powerful tool for 

studying the spatial arrangement of proteins, peptides, lipids, 

and small molecules in tissues [5-6]. The multichannel 

detection capability of mass spectrometry (MS) enables the 

position sensitive analysis of hundreds of different 

molecules in a single experiment.  This is achieved by 

acquiring mass spectra across a sample at precisely defined 

geometrical coordinates. Post acquisition processing of the 

data enables ion density maps (images) to be generated for 

any of the detected species where the relative intensity of the 

ions is displayed based on a color intensity scale [7].  

IMS can provide localized protein profiles from a tissue, 

thus making it possible to relate changes in tissue histology 

to the changes in the protein signature of the sample. By 

comparing spectra from normal and diseased tissue, it is 

possible to determine potential biomarkers that can indicate 

the presence/absence of disease [8-9] and may also be used 

to determine disease progression and patient prognosis [10]. 

A histology guided approach using MALDI-MS profiling 

has also been used for proteomic analysis of specific tissues 

sites [11-13] and for classifying tissue samples into different 

cancer types.   

In this paper we describe a unique methodology that can 

potentially improve the accuracy of FL diagnosis by using 

MS data to classify a tissue into disease relevant 

morphological sections.  
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II. DATA COLLECTION 

Preliminary data was obtained for a whole-slide FL case. 

Formalin fixed paraffin embedded (FFPE) tissue sections 

from healthy tonsil biopsies were used to generate image 

data as well as MS data because of the clear demarcations of 

the mantle zones in these images. 

A. Tissue preparation 

Serial 5 µm thick sections were cut from the FFPE tonsil 

tissue blocks using a microtome. Sections from the tissue 

blocks were either mounted onto ITO-coated conductive 

slides for MALDI MS analysis, or onto standard glass 

microscope slides for H&E staining. Deparafinization of the 

tissue sections was carried out using washes in xylene and 

graded ethanol washes. Once the slides were fully dry, a 

trypsin solution was automatically spotted onto the tissue 

section using a Portrait 630 reagent multi-spotter (Labcyte, 

Sunnyvale, CA) into an array incorporating 250 µm center to 

center spacing between individual spots, each of which were 

approximately 175 µm in diameter. The trypsin was spotted 

for over 30 iterations while allowing the trypsin solution to 

dry following each droplet application.    An optically 

scanned image of the spotted tissue was generated for 

registration with the H&E stained tissue image. The spotted 

tissue image was used to map spatial locations of the spots in 

the tissue to the corresponding mass spectra. The spotted 

tissue image is relatively low resolution compared with the 

H&E image. 

 An H&E stained section of the FFPE tissue section was 

scanned to generate a high-resolution image of pixel size 

59363 x 58311. This high-resolution image was scaled down 

by a factor of 15 for use in registration. Fig.1(a) shows a 

lower-resolution version of the H&E stained tissue image. 

B. Imaging Mass Spectrometry  

 Following trypsin/matrix application, FFPE tonsil 

tissues were analyzed using an Ultraflex II MALDI 

TOF/TOF mass spectrometer (Bruker Daltonics, Billerica, 

MA) controlled by the Flex Control 3.0 software package. 

The mass spectrometer was operated with positive polarity 

in reflectron mode and spectra acquired in the range of m/z 

700-5000. Image acquisition of the spotted arrays was 

carried out using the Flex Imaging 2.0 (Bruker Daltonics, 

Billerica, MA) software package. A total of 1600 spectra 

were acquired at each spot position in a customized spiral 

raster pattern in 200 shot increments at a laser frequency of 

200 Hz. The customized raster pattern was used to sample 

the entire spot area. The red spots on the tissue shown in Fig. 

1(b) indicate the locations where mass spectra were 

acquired. This data is critical to the analysis because it 

correlates spatial locations on the tissue section with a 

unique mass spectrum. 

 
 Fig. 1(a). Tissue image    Fig. 1(b). Laser grid image 

 

III. IMAGE ANALYSIS 

A. Spot Detection 

As shown in Fig. 1(b), the red locations indicating the 

laser spots are easily identifiable on the spotted tissue image. 

However, the image also contains non-red spots and the 

RGB colorspace is not optimal for locating the red spots.  

 

        
 

Fig. 2. Laser spot detection: a* channel, Thresholded image, Final result  

 

The spotted tissue image was first converted to the La*b* 

colorspace. The red spots in the RGB colorspace are 

converted to bright spots in the a* channel, while the gray-

blue spots in the RGB colorspace are observed to have 

significantly lower values in the same channel. The a* 

channel was segmented into background and laser spots by 

thresholding, with the threshold determined using the Otsu 

method [16]. The segmentation operation is followed by a 

simple edge detection operation. Laser spots were detected 

by labeling connected components and computing the 

centroid of each connected component.   

Once the laser spots were identified, the locations of the 

laser spots in the image were mapped to the files containing 

the MS data.  

B. Image Registration 

For the preliminary study, the scaled down H&E image 

and the laser grid image were registered manually. A non-

reflective similarity transform was used after selecting 

appropriate control points in the two images. The 

registration process was completed using the Image 

Processing Toolbox in MATLAB (Mathworks, Natick, MA). 

The two images were registered after dividing them into four 

separate sub-images in order to localize the effects of 

distortion caused during the sectioning process.  
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Fig. 3(a). Tissue with laser circles           Fig. 3(b). Sample points from 

regions of interest 

IV. MALDI-MS DATA ANALYSIS 

A. Data Selection 

In order to characterize different sections of the tissue that 

are morphologically relevant to disease state, it was first 

necessary to identify mantle, follicle and intra-follicular 

regions of the tissue as shown in Fig. 3(b). The red location 

corresponds to the mantle zone, green corresponds to the 

follicle and blue corresponds to the intra-follicular region. 

Fig.4 shows a sample spectrum obtained from a mantle zone 

location. The locations of laser spots were transferred to the 

H&E stained image as shown in Fig. 3(a). An expert 

hematopathologist (GL) reviewed these locations and 

established the ground truth for the subsequent analysis. 

Data points that were not located in the mantle, follicle or 

intrafollicle regions were not used in the analysis because 

they are not considered relevant to the disease state.  

 
Fig. 4. Sample spectrum from mantle zone in tissue 

B. Analysis 

MS data from the selected points of interest was first 

baseline corrected for noise and background reduction and 

then normalized. Previous studies have compared mass 

spectra from normal and disease tissue to identify significant 

bio-markers. Since a single normal tissue sample was used 

in the study, significant bio-markers could not be identified 

by simple comparison of protein profiles from different 

tissue sections.  Therefore, the complete spectra consisting 

of 56,492 data points each were used to develop classifiers 

to distinguish between the three tissue regions. Common 

statistical techniques applied for the analysis and 

classification of mass spectrometry data are Principle 

Component Analysis (PCA), Support Vector Machines 

(SVM) and K-Nearest Neighbor classification [8], [13-15]. 

 In this study we used the Support Vector Machine (SVM) 

and K-Nearest Neighbor (KNN) classifiers available in the 

Statistics Toolbox for MATLAB [17]. A leave-one-out cross 

validation study was performed using the SVM and KNN 

classifiers. The results are summarized in Table 1 and 2. 

 

Ground 

Truth 

Computer 

Mantle  Follicle  Intrafollicle  

Mantle 40.00 4.00 56.00 

Follicle 23.52 64.70 11.76 

Intrafollicle 4.46 2.23 93.29 

Table 1 Confusion matrix in % for leave one out validation 

using SVM  classifier 

 

Ground 

Truth 

Computer 

Mantle  Follicle  Intrafollicle  

Mantle 40.00 24.00 36.00 

Follicle 47.05 52.94 0 

Intrafollicle 11.17 4.46 84.35 

Table 2 Confusion matrix in % for leave one out validation 

using KNN  classifier 

 

A second analysis similar to the procedure described by 

Ressom et al in [8] was used to perform a K-fold cross 

validation study. The availability of data points from each 

class used in the analysis is dictated by the physical 

characteristics of the tissue being studied. As a result, in this 

study a total of 189 spectra from the intrafolliclular region 

were available as compared with 31 for the follicle regions 

and 43 for the mantle zone. To avoid biasing the classifiers, 

only 43 spectra from the intrafollicle region were used along 

with all the data from mantle and follicle regions. Tables 3 

and 4 summarize the results of this analysis averaged over 

200 runs of the K-fold cross validation procedure. In each 

run, training and testing sets were determined randomly, 

however, the total number of spectra from each class were 

the same. It is seen that both classifiers perform well in 

identifying the intrafollicle and mantle regions. However, 

the follicle regions are misclassified into the mantle zone 

almost 50% of the time.  

 

      
Figure 6. Classification challenges 

 

A potential cause of the lower classification accuracy in 

the case of mantle vs. follicle is that in several cases, the 

mass spectrometry data was obtained from a region 

overlapping both the mantle zone and the follicle region as 

shown in Fig. 6. 
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Ground 

Truth 

Computer 

Mantle  Follicle  Intrafollicle  

Mantle 85.55 9.55 4.90 

Follicle 41.73 53.45 4.82 

Intrafollicle 22.98 0.36 76.65 

Table 3. Confusion matrix in % for SVM classifier  

 

Ground 

 Truth 

Computer 

Mantle  Follicle  Intrafollicle  

Mantle 48.27 42.22 9.51 

Follicle 45.56 50.98 3.46 

Intrafollicle 20.22 4.26 75.52 

Table 4. Confusion matrix in % for KNN classifier  

 

In such cases, the data is assigned by the human expert to 

either one of the regions based on the location of a majority 

of the laser spot inside either one of the regions. This can 

affect the results of the classifier since the mass spectra now 

contains contributions from two regions of tissue. In Fig. 6, 

two regions classified as mantle (red) and follicle (green) 

respectively show this problem. The inability of the 

classifiers to distinguish between the mantle and follicle 

regions with high rates of accuracy can also be ascribed to 

the fact that these two regions of tissue consist of similar 

types of cells. As a result it is reasonable to expect that the 

protein profiles of these regions are similar in nature. In this 

study, all data points in each mass spectrum were considered 

in the analysis which makes the problem computationally 

expensive. However, the results from this pilot study may be 

used to identify significant markers that can be used for 

reducing the data dimensionality, thus allowing the problem 

to be reduced to a more tractable size.  

V. DISCUSSION  

This paper describes a preliminary study that was done to 

assess the efficacy of using MALDI-MS for classifying 

regions of interest in a Follicular Lymphoma tissue sample. 

A more detailed and rigorous study involving larger data sets 

is currently being developed, which should lead to the 

development of classifiers for identifying follicle, mantle 

and intrafollicle regions in the tissue. Results of these studies 

will be used to develop protocols for classifying FL into 

appropriate classes (I, II, II) using mass spectrometry data as 

well as traditional morphological information used by 

pathology experts. 

VI. CONCLUSION  

In this paper, we have presented a systematic approach to 

enable the use of mass spectrometry data for Follicular 

Lymphoma grading. The proteomic data obtained from the  

MALDI-MS analysis was used to classify locations on a 

tissue into disease relevant classes. By combining the results 

of the MS analysis with computer-aided image analysis it 

may be possible to develop a novel diagnostic tool that 

combines both molecular and morphological datasets from a 

tissue to give a more accurate diagnosis and classification of 

Follicular Lymphoma.  
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