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Abstract— We applied mode-decomposition and matched-
filtering, both signal processing techniques used to increase
the signal-to-noise ratio (SNR), to array CGH data of human
meningioma DNA, in order to extract genomic regions of copy-
number changes potentially associated with tumor progression.
DNA segments from different chromosomes were decomposed
into a small number of dominant components (modes), and
low-amplitude modes were eliminated. The SNR of the entire
segment was increased and it was possible to identify local
changes in the data spatial structure, previously indistinguish-
able due to noise. We applied matched-filtering to the mode-
reduced signals, using a normal DNA sequences (averaged
over 50 healthy donors) as the template. The residual signals
from this process were analyzed to identify disease-related copy
number changes. We were able to identify distinct local changes
at different chromosomes in patients with recurrent versus
primary meningiomas.

I. INTRODUCTION

DNA allelic copy-number variations (CNVs) occur as part

of the heterogeneity of normal human genetic variability

[14]. However, copy number changes have also been impli-

cated in a wide range of diseases, including tumorigenesis

and cancer progression [3][10][13][17]. Characterization of

these genetic changes is important for identifying genes

involved in cancer progression, as well as for diagnostic

purposes and for predicting a patient’s response to treatment.

Array Comparative Genome Hybridization (array CGH)

is a high-resolution technology which allows quantitative

measurements of relative copy number changes and their

mapping onto genome sequences. Chromosomal copy num-

bers are not directly measurable, so array CGH uses a

reference and test DNA sequences, differentially labeled with

fluorescent dyes, and hybridized onto an array. The log-

ratio of the two fluorescence intensities is then computed

and represents the relative copy number between the two

hybridized sequences at each sampled locus. However, given

the significant heterogeneity of genomic profiles, impurity

of the reference sequence, and other biological and ex-

perimental factors, the resulting data are noisy and may

require substantial pre-processing, including artifact removal

and normalization by some data statistic. Nevertheless, array
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CGH provides high resolution and genomic-scale informa-

tion on copy number variation and is thus a powerful tool.

Analysis methods of array CGH data include examination

of single markers, without accounting for the spatial cor-

relation of neighboring markers [7], segmentation methods

and/or Hidden Markov models which are used to identify

correlated DNA regions of interest, locations of copy number

transitions, and segments of loss or gain [6]. In general,

these analysis methods fall into two categories: supervised

and unsupervised. Supervised approaches require a a priori

specification of copy number events, i.e, gain, loss or no

change and target DNA locations of interest. Unsupervised

approaches do not rely on such information and are thus ap-

propriate for discovering novel genomic changes associated

with disease. Application of signal processing techniques to

array CGH data is limited. Yet, these methods are typically

unsupervised and naturally account of correlations between

neighboring time points, which in the context of array CGH

data correspond to spatial correlations between loci.

In this study we applied matched-filtering to array CGH

data from patients with primary and recurrent atypical menin-

giomas, to identify chromosomal regions of significant copy

number changes. We first explored the presence of a genome-

wide, wave-like artifact in the data, first reported by [6]

but consistently identified and extracted in [12]. We applied

a mode-decomposition method [8][16] to extract dominant

signal modes and remove low-amplitude components with

insignificant contributions to the signal. As a result, the

signal-to-noise ratio increased significantly across the entire

segments of interest. Matched-filtering, which is widely used

in pattern recognition, sonar and communications, to extract

a known signal (the template) from an observed signal

corrupted by noise, was then applied to the mode-reduced

data, to identify DNA regions of copy number changes.

Template sequences were synthesized from DNA of healthy

subjects. Sequences from meningioma DNA were treated as

the observed noisy signals.

II. METHODS

A. Array CGH Data

Array CGH data of DNA from primary and recurrent

atypical meningiomas, World Health Organization grade II,

from 65 patients (35 males and 30 females) were obtained

by hybridizing tumor and normal DNA probes on the Agi-

lent Human Genome CGH MicroArray 105. Two reference

sequences (male and female) were used in the hybridization.

The array has approximately 99,000 probes and average

resolution of 15 kb. Reference DNA was obtained from
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10 healthy donors to avoid inclusion of polymorphisms.

Normal and tumor probes were labeled with fluorescent dyes

Cy3 and Cy5, respectively. Following hybridization, the log2

fluorescence intensity ratios (Cy5 to Cy3 fluorescence) were

computed. To obtain a robust normal DNA sequence as

a template signal, and also assess the inter-sequence vari-

ability among healthy donors, we also analyzed 48 normal

sequences obtained from The Cancer Genome Atlas(TCGA)

[1]. These data were generated using the Agilent Human

Genome CGH Microarray 244A, which has approximately

236,000 probes and average resolution of 6.4 kb. In order for

the two data sets to be comparable, we down-sampled the

TCGA data to the same number of probes as the meningioma

array CGH data. All normal sequences where averaged to

obtain the template signal.

B. Matched Filtering

Matched filtering is a theoretically optimum detection

method for extracting a signal of known waveform from an

observed, contaminated by noise signal. If the noise spectrum

is white, the matched filter is the time-reversed signal [18].

The filtering operation involves the convolution of the known

(template) signal with the unknown signal in order to extract

the template from it [2]. Matched-filtering is extensively used

in communications, sonar and pattern recognition applica-

tions. The matched filter h(t) maximizes the SNR and thus

improves the detection of a known signal. It is a waveform-

or pattern-specific filter rather than a frequency band-specific

filter. The method involves convolving an observed signal

y(t) with the filter h(−t) to obtain the matched-filtered signal

yMF(t), i.e.,

yMF(T ) = y(t)⋆h(−t) =
∫ ∞

−∞
y(t)h(t −T )dt (1)

This process corresponds to signal cross-correlation, which,

however, does not involve time-reversal. In this study we

used one normal DNA sequence as the template, obtained

by averaging over 50 normal sequences, and matched-filtered

the meningioma sequences with this template. The signal of

interest was the residual from this process, as the matched-

filtered signal represents the best match between template

and observed data, i.e, increases the SNR in regions where

the DNA sequences were normal. Instead we were interested

to eliminate these and extract the abnormal residual signal.

C. Mode Decomposition

A time series may be decomposed into a theoretically

infinite number of components (modes), which are never-

theless bounded by the sampling frequency. Not all modes

contribute equally to the signal. Fourier decomposition of a

signal assumes stationarity and sine or cosine mode shapes.

Signals are, however, often non-stationary and their mode

shapes significantly deviate from sine or cosine functions.

In the context of array CGH data, copy-number variation is

a non-stationary process. Changes in a cluster of spatially

correlated markers corresponds to a high-frequency signal,

whereas spatially sparse copy-number variation corresponds

to a low-frequency signal. In order to identify the potential

contribution of a previously reported wave-like artifact in

the array CGH data, we applied a modified mode decom-

position technique [16], based on the original Empirical

Mode Decomposition (EMD) [8], which does not assume

stationarity. Instead, any signal consists of a set of intrinsic

mode functions (IMF) which can be sequentially extracted

through a sifting process. The local extrema of the signal are

first identified and fitted with a cubic spline, to obtain the first

IMF c1. The latter is subtracted from the original signal, and

the process is repeated until the the variance of the residual

signal is very small. The process stops when the normalized

squared difference between two successive sifting operations

is small, based on an a priori set threshold for σk, where:

σk =
∑

T
t=0 |ck−1(t)− ck(t)|

2

∑
T
t=0 c2

k−1

(2)

All IMFs were examined to ensure that they were zero-mean.

The original method was modified to account for potential

modal amplitude instabilities at the endpoints [16].

III. ARRAY CGH DATA ANALYSIS

An example of array CGH data, from the reference se-

quence and one patient with meningioma, respectively are

superimposed in Figure 1. The segments are along chromo-

some arms 1p and 1q, chromosomes 2, 3 and 5. CNVs in

these chromosomes have been implicated in progression of

brain cancers. Specifically, chromosome arm 1p has been

associated with copy number loss and chromosomes 2, 3, 5

and arm 1q with copy number gain [10][17].
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Fig. 1. DNA segments along chromosomes 2, 3, 5 and arms 1p and
1q, from the averaged normal sequence (blue) and from a patient with
meningioma(red).

We investigated the ’low-amplitude’, wave-like artifact iden-

tified in [12], using modified empirical mode decomposition,

to increase the data SNR. Figures 2 and 3 show examples of

original and mode-reduced segments along chromosome 3 of
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the normal sequence and of one cancer patient, respectively.

Signals were decomposed into a small set of components

(typically less than 20). Usually, the physics of the system

guides the choice of modes that are subsequently chosen.

Here, small modal amplitude is the only available other

criterion for eliminating modes. Figure 2 shows the effect

of progressively eliminating higher order/frequency modes

from the normal sequence, resulting in progressively smaller

variances. Figure 3 shows the effect of eliminating low-

amplitude modes from the meningioma sequences. Thus, this

method is adequate for increasing the SNR both in regions of

large copy-number gains and losses, and in regions of small

copy-number variability, as in the case of normal sequences.

Fig. 2. DNA segments along chromosomes 3, from the normal sequence. A
low amplitude mode is superimposed to the original segment (top). Mode-
reduced signals are shown in the middle and bottom plots.
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Fig. 3. DNA segments along chromosomes 3, from a sequence of one
patient with meningioma. High and low-amplitude modes are superimposed
to the original signal. The mode-reduced signal is shown in the bottom plot.

Higher order modes and/or low-amplitude modes were elimi-

nated based on their contribution to the SNR of the sequence,

i.e, modes were included as long as the resulting SNR

was at or above a threshold, here set to 3 (10log10
signal
noise

=
10log10(2) = 3). Sequences were re-synthesized by super-

imposing only the selected modes. The local structure of

the data was more clearly distinguishable in the mode-

reduced signals, e.g, in Figure 3 between markers 800-1000.

Simultaneously, noise levels were reduced in the first 800

markers, revealing a more heterogeneous data structure than

that of the original sequence. We computed the SNR of

the data by normalizing them by the standard deviation of

the entire chromosomal segment, both pre- and post-mode

decomposition, for all patients and chromosomes. Figure

4 compares the two SNR values, for each marker along

the segment, for 3 different patients and segments along

chromosomes 3, 1, and 2.

Fig. 4. Comparison of SNR before and after mode decomposition and
elimination of low-amplitude modes. Columns correspond to chromosomes,
rows to patients.

Mode-decomposition and signal re-synthesis based on the

reduced number of modes, resulted in higher SNR. Prior

to matched-filtering, all data were, therefore, mode-reduced.

Filtering was performed using a sliding window of 100 data

points (markers), corresponding to DNA segments of length

> 1-2 Mb. The effect of window length on the resulting

matched-filtered signal was found to be insignificant. The

filtered signals were subtracted from the original sequences,

and residual signals were further examined for copy number

changes, as they represented the copy number deviations

from normal CNVs, possibly due to cancer progression.

Figure 5 shows the raw (top), mode-reduced (middle) and

residual (bottom) signals, for one patient with meningioma.

There is a clear noise level reduction in the mode-reduced

signal. However, although the general trends of copy number

loss in the p arm of chromosome 1 and gain in the q

arm are distinguishable even in the raw and mode-reduced

signals, it is difficult to identify local copy number changes

in these signals. In contrast, the SNR increased locally in the

matched-filtered data, reflecting regions of significant relative
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Fig. 5. log2 ratios along chromosome 1, of one patient with meningioma.
Raw data (top), mode-reduced (middle) and residual (bottom).

copy-number changes in comparison to the normal DNA

sequence. We examined data from patients with recurrent and

primary tumors separately, to identify tumor-type specific

copy-number changes. Figure 6 shows an example of the

matched-filter chromosome 1 sequence, of 6 patients (3 with

recurrent and 3 with primary tumors). For patients with

recurrent tumors there were consistent local regions of copy

number gain in arm 1p, followed regions of copy number

loss, not distinguishable in the raw data. In some patients

with primary tumors, a specific gain at the end of arm 1p

was also seen, but those data were more heterogeneous.

Fig. 6. log2 ratios along chromosome 1, of patients with recurrent tumors
(left column), and primary tumors (right column), respectively.

IV. DISCUSSION

We have presented preliminary results from the analysis

of array CGH data of primary and recurrent human menin-

giomas, using mode-decomposition, followed by matched-

filtering, to increase the SNR of the data, and identify specific

chromosomal regions where copy number changes occur,

possibly as a result of tumor progression. We have shown

that, reducing the number of signal components through

mode decomposition increased SNR. Matched-filtering, used

to eliminate the normal copy-number variability of the data,

resulted in signals where localized CNVs at specific locations

along the chromosomes were clearly identifiable. Consistent

CNVs for all patients with recurrent meningiomas were seen,

at least in the few fully analyzed chromosomes. Thus, signal

processing techniques that aim at increasing the SNR may

be useful in the analysis of array CGH data, to identify local

(small-scale) copy number changes, possibly associated with

tumor progression.
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