
  

  

Abstract— In this paper, we present a new blockwise 

permutation test approach based on the moments of the test 

statistic. The method is of importance to functional 

neuroimaging studies. In order to preserve the exchangeability 

condition required in permutation, we divide the time series 

into certain exchangeability blocks. In addition, efficient 

moments-based permutation tests are performed by 

approximating the permutation distribution of the test statistic 

with the Pearson distribution series. This involves the 

calculation of the first four moments of the permutation 

distribution within each block and then over the whole time 

series. The accuracy and efficiency of the proposed method are 

demonstrated using both simulated time series and fMRI data.  

I. INTRODUCTION 

YPOTHESIS Testing has been widely used in functional 

neuroimaging data analysis, such as brain activation  

detection and inference, functional integration and 

connectivity [1] - [5]. Traditionally, researchers perform the 

statistical analysis by using parametric hypothesis testing, 

including commonly used F test, T test, Z test and 

Hotelling’s T
2
 test [1], [2]. In general, a parametric method 

models the distribution of a test statistic with a parametric 

form which is mathematically tractable.  The parametric 

methods thus work well when data is independent and 

normally distributed. However, in neuroimaging studies, the 

data distribution is usually unknown. It is also very 

expensive to collect large amount of data to satisfy the 

normal distribution assumption for large sample size 

independent data. Furthermore, sometimes, a desirable test 

statistic could be mathematically intractable. Nonparametric 

hypothesis testing methods are preferable in these cases. 

In order to deal with small sample size neuroimaging data 

with unknown distribution, Holmes et al. [3] introduced 

nonparametric permutation tests. Permutation tests construct 

the distribution of a test statistic by resampling data without 

replacement. They are flexible and distribution-free. The key 

and only assumption for permutation tests is data 

exchangeability. In the two-sample hypothesis testing case, 

data exchangeability means the distributions of two group 

data are identical under the null hypothesis [4], [6]. We can 

then randomly permute na data to one group and the rest nb 
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data to the other group. Here, na and nb are the sample sizes 

of the two groups. As a result, the empirical distribution of a 

test statistic is constructed using test statistic values for all 

possible permutations. The original observation can be 

considered as one of all possible permutation setups. To 

measure how strongly the observed data support the null 

hypothesis, we calculate the p-value by dividing the 

frequency of permutations having more extreme test statistic 

value by the number of all permutations. The statistical 

decision is made based on whether the p-value is less than a 

pre-chosen significance level. We reject the null hypothesis 

if the p-value is smaller than the pre-chosen significance 

level since it is unlikely to occur under the null hypothesis.  

 In real applications, the data exchangeability condition is 

not always valid. Although permutation tests still work when 

the exchangeability assumption is slightly violated, it is 

important to preserve data exchangeability to a reasonable 

level [4], [6]. In functional neuroimaging data analysis, the 

main effect (i.e. the effect of interest or the effect to be 

tested) is often confounded with the undesirable temporal 

artifacts such as those caused by scanner drift, head motion, 

and cardio-respiratory effects. Such artifacts can be reduced 

in the data preprocessing but are unlikely to be taken away 

completely. Thus, the global data exchangeability does not 

usually hold. Nichols and Holmes [4] proposed a restrictive 

permutation scheme by segmenting the entire set of a time 

series into certain blocks. Since the time duration is 

relatively short within each block, the data exchangeability 

approximately holds within a block.  The blockwise 

permutation tests only allow permutations within each block 

to preserve data exchangeability and prohibit any 

permutation across blocks. 

Another critical issue involved in permutation tests is the 

computational complexity. There are three common 

approaches to construct the permutation distribution [6], [7], 

[8]: (1) exact permutation enumerating all possible 

arrangements; (2) approximate permutation based on random 

sampling from all possible permutations; (3) approximate 

permutation using the analytical moments of the exact 

permutation distribution under the null hypothesis. The main 

disadvantage of the exact permutation is the computational 

cost, due to the factorial increase in the number of 

permutations with the increasing number of subjects. The 

second technique often gives inflated type I errors caused by 

random sampling. When a large number of repeated tests are 

needed, the random permutation strategy is also 
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computationally expensive to achieve satisfactory accuracy. 

Regarding the third approach, the exact permutation 

distribution may not have moments or moments with 

tractability. In most applications, it is not the existence but 

the derivation of moments that limits the third approach. 

Recently, we have proposed an efficient recursive algorithm 

to calculate the moments of the permutation distribution by a 

simple sumproduct of data partition sums and index partition 

sums [9]. The data partition sums and index partition sums 

are computed recursively, from the simplest sum to the most 

complex sum.  For the first four moments, the computation 

can be done in the first order or third order polynomial time 

for univariate and multivariate test statistics, respectively. 

Given the first four moments, the permutation distribution 

can be well fitted by the Pearson distribution series [10]. 

In this paper, we develop a new moments-based blockwise 

permutation test method. We first divide the whole scans into 

certain blocks. For each block, we apply our recursive 

algorithm to obtain the first four moments. The first four 

moments of the entire set of scans are computed by 

combining the first four moments from all blocks through an 

efficient representation. With this efficient moments-based 

blockwise permutation tests scheme, we maintain the 

flexibility of permutation tests, preserve the exchangeability 

condition, and reduce the computation cost dramatically. 

II. METHODOLOGY 

A. Blockwise Permutation Tests 

Let us consider a single subject activation experiment 

based on functional magnetic imaging (fMRI). The approach 

is applicable to other functional neuroimaging such as 

positron emission tomography (PET). Let x = [x(1), x(2), …  

, x(n)] denote a voxel time series of size n (i.e. n scans). Each 

scan is associated with a condition, for example, “activate” 

or “rest”. To test the main effect (i.e. the effect of interest or 

the effect to be tested), we may choose a test statistic to 

measure the difference between scans of “activate” and scans 

of “rest”. One choice could be the mean difference test 

statistic, which calculates the difference between the mean of 

“activate” scans and that of “rest” scans.  In this case, we 

formulate the test statistic as: ( ) ( ) ( )
i

T x c i x i= ∑ , where 

( ) 1 / ac i n= if the status of the i-th scan is “activate”, 

( ) 1 / rc i n= −  elsewhere. Here, 
a

n and 
r

n  are respectively 

the numbers of “activate” and “rest” scans.  

 Since the main effect is usually confounded with the 

undesirable temporal effects in the time series, the 

exchangeability condition may not hold for the entire set of 

scans. To tackle this, we divide the scans into certain blocks, 

and assume that the exchangeability is preserved within each 

block, which can be defined as an exchangeability block 

(EB) [4], i.e., x = [x(1), …, x(n1); x(n1+1), …, x(n1+ n2); … ; 

x(n-ng+1), … , x(n)] = [x1; x2; … ; xg], where x1 = [ x(1), …, 

x(n1)], …, xg = [x(n-ng+1), … , x(n)] are g EBs. Next, we 

perform all possible permutations within each block and 

conduct blockwise permutation tests. To preserve the 

exchangeability, no cross-block permutation is allowed. Note 

that the number of total possible blockwise permutations is 

equal to the product of the numbers of permutations within 

each block, i.e., 
1 2#( ) #( ) #( ) #( )gπ π π π= ⋯ , where π is 

the blockwise permutation, and πi is the permutation within 

the i-th block. Although this number is smaller than the 

number of general non-blockwise permutations, it is still 

large enough to lead to high computation cost for a typical 

time series. 

B. Moments-based Blockwise Permutation Tests 

To estimate the p-value, the permutation distribution 

needs to be constructed using test statistic values 

corresponding to all possible permutations. However, it is 

computationally expensive to enumerate all possible 

blockwise permutations. To reduce the computation cost, we 

fit the permutation distribution with the Pearson distribution 

series [10] without performing any permutation. The Pearson 

distribution series is a widely used four-parameter system. 

The four parameters required are the mean, variance, 

skewness, and kurtosis, which can all be calculated from the 

first four moments. We describe next about how to calculate 

the moments of our blockwise permutation distribution.  

We have developed an efficient recursive algorithm [9] to 

calculate the moments of regular (non-blockwise) 

permutation distribution. To obtain the moments of 

blockwise permutation distribution for the entire set of time 

series, the key idea is to formulate it as a combination of the 

moments of regular permutation distribution from all EBs 

(see Eq. 1). Here, we assume the test statistic is summable. 

That is, 
1 1 2 2( , ) ( , ) ( , ) ( , )g gT x T x T x T xπ π π π= + + +⋯ . 

This is a reasonable assumption and works for most popular 

test statistics or their equivalent test statistics [11]. For 

permutation tests, two test statistics are equivalent if they 

have the same p-value for any observation. 

The r-th moment of the blockwise permutation tests is: 
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In order to further reduce the computation cost, we represent 

the first four moments by several symmetric functions: 

( ) ( ( , ) ) / #( ) ( ( , ) ),
i

j j

j i i i i im i T x E T x
π

π π π= =∑  
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( ),j j

i

m m i= ∑  
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22 2
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where mj(i) is the j-th moment for the i-th block. All within-

block moments mj(i) can be obtained through our newly 

developed recursive algorithm [9].  Here, the within-block 

moments are the moments for an EB data using the same test 

statistic function as that for the complete data. For example, 

when n = 8, and the condition is [activate, rest, activate, rest, 

activate, rest, activate, rest], we choose the mean difference 

test statistic for the complete time series, i.e., T = (x(1)+ 

x(3)+ x(5)+ x(7))/4 - (x(2)+ x(4)+ x(6)+ x(8))/4. If we divide 

the time series into two blocks, x1 = [ x(1), x(2), x(3), x(4)]  

and x2 = [ x(5), x(6), x(7), x(8)] . For each block, for example 

x1 , T(x1)  should be ( x(1)+ x(3))/4 - ( x(2)+ x(4))/4, not the 

mean difference for the block: ( x(1)+ x(3))/ 2 - ( x(2)+ 

x(4))/2. 

In summary, we convert the moments calculation for 

blockwise permutation tests to a simple combination of a 

moments calculation for regular permutation tests without 

restriction. The computation cost due to this simple 

combination can be ignored, compared with the cost of a 

moments calculation for regular permutation tests. 

III. RESULTS 

A. Simulated experiments 

To illustrate and validate our moments-based blockwise 

permutation tests method, we generate a simple time series 

confounded with two different temporal artifacts. The main 

effect (Fig. 1(b)) is generated by adding a Gaussian noise to 

a two-state boxcar function (Fig. 1(a)). Two temporal 

artifacts, a nonlinear cosine trend (Fig. 1(c)) and an edge 

trend (Fig. 1(e)) were added to the main effect, leading to 

two confounded time series in Fig. 1(d) and Fig. 1(f). Here 

the null hypothesis is that no difference between the two 

states exists. The exchangeability condition does not hold for 

the entire set of the time series with 180 samples because of 

the strong temporal artifact under the null hypothesis.  

Therefore, we divide the time series into 15 blocks. Each 

block consists of 6 samples with boxcar function value 1 and 

another 6 samples with value 0. Within each block, the 

temporal artifact can be ignored. The number of all possible 

blockwise permutations is (12C6)
15

 ≈ 3×10
44

. It is extremely 

expensive to enumerate all possible blockwise permutations. 

We choose the mean difference test statistic and apply the 

proposed efficient moments-based blockwise permutation 

method. We obtained the p-value in 0.001 seconds on our 

computer (Intel Core 2 CPU, 2.4GHZ, 2G RAM). 

Since Gaussian noise is added here, t-test is a valid test for 

the main effect and its result can be used as the golden 

standard.  Fig. 1(g) shows the comparison of p-values 

obtained by different methods. The first four p-values are 

respectively calculated by the t-test and the regular moments-

based permutation tests for the main effect time series, and 

the moments-based blockwise permutation tests for the time 

series confounded with a cosine trend and an edge trend. 

They are all very similar. This demonstrates that our 

moments-based blockwise permutation tests are robust to 
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Fig. 1.  Comparison of blockwise and regular permutation tests. (a): 

boxcar function. (b): the main effect time series with Gaussian noise. 

(c): the nonlinear cosine trend. (d): the mixed time series with cosine 

temporal effect. (e): the edge trend. (f): the mixed time series with edge 

temporal effect. (g): estimated p-values from t-test (_T), regular and 

blockwise moments-based permutation tests (_MP and_BK_MP).  
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different temporal artifacts. The fifth and sixth p-values are 

results of the t-test and the regular moments-based 

permutation tests for the time series with the cosine trend; 

the seventh and eighth p-values are results of the 

corresponding two tests for the time series with the edge 

trend. For the time series confounded with temporal artifacts, 

the t-test and regular moments-based permutation tests are 

not valid and lead to poor estimation of p-values. 

B. Auditory fMRI data 

The auditory fMRI data (block) was from the SPM data 

site, and its description is available at 

http://www.fil.ion.ucl.ac.uk/spm/data/auditory.html. The 

paradigm consists of a rest period of 42s, followed by 

auditory stimulus with 42s bi-syllabic words at 1 Hz. 96 

acquisitions were made. Each acquisition has 64x64x64 

(3x3x3 mm
3
) voxels. Due to T1 effects, we discarded the 

first 12 scans. The rest 84 acquisitions were made (RT=7s), 

in blocks of 6, giving 14 42s segments. The condition for 

successive segments alternated between rest and auditory 

stimulation, starting with rest.  

In order to have some form of ground truth, we take the 

pre-processed data (smoothed, normalized and realigned) 

instead of the raw fMRI data, but add cosine and edge trends 

to the time series separately to generate two sets of pseudo-

fMRI data. For both cases, we divide the time series into 7 

blocks. Each block consists of a 42s rest segment and a 42s 

auditory stimulation segment. The mean difference test 

statistic is used to detect activation. Due to unknown data 

distribution and temporal artifacts, the t-test is not a valid 

technique here. We compare the results of moments-based 

regular and blockwise permutation tests. The blockwise 

permutation tests have succeeded in detecting the auditory 

cortex regions. The regular ones are sensitive to the 

confounded temporal artifacts and have difficulty in 

identifying auditory cortex regions. 

IV. CONCLUSION AND DISCUSSION 

We have developed a new moments-based blockwise 

permutation test approach based on the moments of the test 

statistic, and applied it to activation detection in functional 

neuroimaging. To preserve the exchangeability condition, 

the time series are first divided into several exchangeability 

blocks. Next, efficient moments-based permutation tests are 

performed by approximating the permutation distribution of 

the test statistic with the Pearson distribution series. This 

involves the computation of the first four moments of the 

permutation distribution within each block and then over the 

entire set of a time series. Experimental results demonstrated 

the advantages of the proposed method.  

Although we focus on fMRI data analysis in this paper, 

the proposed method is general and applicable to many other 

situations and biomedical image modalities. It can deal with 

different artifacts, including the spatial and temporal effects, 

etc. For example, if the data are collected from different 

instruments or sites, it would be reasonable to block the data 

according to the instrument or site in order to preserve 

exchangeability in the permutation hypothesis tests. 

Therefore, our blockwise permutation method has potential 

wide applications in both structural and functional 

neuroimage analyses involving hypothesis tests and group 

comparisons. One of issues that needs to be investigated in 

the future is the dependence of the size and the number of 

blocks on the performance of the method. 
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Fig. 2. Auditory fMRI activation detection. Top panel: pseudo-fMRI 

data with cosine trend. (a) and (b): results of moments-based blockwise 

and regular permutation tests, respectively. Bottom panel: pseudo-fMRI 

data with edge trend: (c) and (d): results of moments-based blockwise 

and regular permutation tests, respectively. (e) p-value color bar. 
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