
  

  

Abstract— Hepatocellular carcinoma (liver tumor) is one of the 
most common malignancies causing an estimated one million 
deaths annually, and the fastest growing form of cancer in the 
United States. Dynamic Contrast Enhanced MRI (DCE-MRI) is a 
useful way to characterize tumor response to contrast agent uptake, 
but the method still lacks maturity in terms of quantifying tumor 
burden and viability. We propose a semi-supervised technique for 
visualizing and measuring liver tumor burden and viability from 
DCE-MRI examinations. In order to solve the challenging 
segmentation problem, we exploit prior information about the 
spatio-temporal characteristics of DCE-MRI data, and perform k-
means clustering in a hybrid intensity-spatial feature space. 

I. INTRODUCTION 
Hepatocellular carcinoma or HCC (liver tumor) is one of the 
most common malignancies causing an estimated one 
million deaths annually, and the fastest growing form of 
cancer in the United States. Depending on the extent of 
tumor burden, adjuvant therapy in nonsurgical patients and 
surgically eligible patients awaiting transplant include 
transarterial chemoembolization (TACE), percutaneous 
ethanol injection (PEI), radiofrequency ablation (RFA), 
microwave coagulation therapy (MCT), and laser induced 
thermotherapy (LITT)1. Current standards for measuring 
treatment response in oncology include the Response 
Evaluation Criteria in Solid Tumors (RECIST) 2 and WHO 
Criteria. The difficulty with these standards is that they 
assess tumor response in only two states, either successfully 
treated or unsuccessfully treated. Furthermore, as both of 
these criteria are based on purely anatomic measures, they 
fail to take into account that not all “lesions” are equivalent 
vis‐à‐vis viability. A recent study using size criteria, and 
subjective assessment of new tumors, found that CT and MR 
have an overall sensitivity and specificity of 35% and 64%, 
respectively, in detection of presence of residual HCC 
following TACE 3.  

An accurate evaluation of liver tumor viability must take 
into account three factors: size, metabolism (potentially 
measured by MR diffusion characteristics and/or MR 
spectroscopy), and vascular perfusion (potentially measured 
by MR contrast enhancement)4. Determining tumor extent, 
growth and response to therapy is essential for both clinical 
trials and routine clinical practice, but quantitative strategies 
are currently limited. Minimally invasive imaging-derived 
biomarkers can greatly aid early detection, characterization 
and measurement of progression of liver tumors, and 
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assessment of response to therapy. However, quantitative 
biomarkers from imaging techniques like dynamic contrast-
enhanced MRI (DCE-MRI) have had limited impact due to 
significant variability in anatomic site, pathologic condition, 
physiologic features of the normal and pathologic cells and 
their microenvironment. CT Perfusion studies by Sahani et 
al. correlated parameters of blood flow (BF), blood volume 
(BV), mean transit time (MTT), and permeability surface 
area product (PS) with presence of tumor and stage of 
tumor6. BF and MTT showed statistically significant 
correlations with presence of tumor, and all parameters 
showed statistically significant correlations with tumor 
grade. Earlier studies measured global perfusion of the liver 
in terms of a mean Hepatic Perfusion Index (HPI)7, which is 
neither locally specific not informative enough for staging 
purposes. Perfusion modeling has shed considerable light on 
the pharmacokinetics of contrast uptake in carcinomas9, but 
this wealth of information has not been effectively combined 
into quantitative biomarkers related to tumor location, extent 
and growth. 

It is notoriously difficult to estimate the parameters of a 
multi-exponential perfusion model from a small number of 
noisy, unreliable time points. Our insight is that these 
challenges can only be overcome by fully exploiting prior 
information about the spatio-temporal characteristics of 
DCE-MRI data. We propose a semi-supervised technique for 
visualizing DCE properties of tissues; segmenting liver 
volumes into normal tissue, vasculature, enhancing 
carcinomas and necrotic tumors; and measuring liver tumor 
burden and viability from DCE-MRI examinations. The 
classification will rely on dynamic contrast response of 
various tissue types as well as on spatio-temporal image 
priors to obtain anatomically realistic segmentations. A 
distinguishing feature of this proposal is the use of 
pathology-proven gold standard for validation purposes, in 
keeping with our goal of establishing conformity to 
clinically established standard. Experimental data were 
acquired at 3 Tesla with Gadoxetate Disodium (Eovist®), a 
new liver-specific contrast agent having greater hepatic 
uptake and up to 50% excretion through the liver15. 
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II. METHOD 
Dynamic Feature Extraction from DCE-MRI data 

In DCE-MRI, the subject is injected with a contrast agent 
which appears hyperintense in a T1-weghted MRI scan. 
The contrast is injected a few seconds after the scan has 
been started, in order to first obtain a baseline or pre-
contrast MRI. Then after the contrast bolus has had a 
chance to run through the vasculature, several time points 
are acquired. When MRI signal from a given voxel are 
plotted, the time-course of the contrast, as it perfuses 
through the tissue, can be readily characterized. Let us 
denote by ݒ a voxel in the volume indexed by the set of 
voxels א  ࣪, and the associated time series ݔሺ݊ሻ 
where ݊ indexes the time points in the DCE-MRI exam. 
The total number of voxels in the volume is denoted by |࣪|. A typical plot of ݔሺ݊ሻ in the case of rabbit liver 
enhancement using Gadoxetate Disodium is shown in figure 
1. Different tissue classes have varying response to contrast 
agent – healthy tissue in general enhances less than 
enhancing carcinomas, but more than necrotic tissue, which 
does not enhance appreciably.  

In this paper, the following dynamic features from the time-
resolved signal are extracted, as depicted in figure 
2: baseline (pre-contrast) MR signal (BL), peak 
enhancement (PE), and area under the 
enhancement curve (AUC). At the coarse time-
scale shown in Figure 2(a), more detailed dynamic 
features that are routinely extracted from vascular 
perfusion studies at much higher temporal 
resolution (figure 2(b)) are not available. We show 
both models here for illustration – in our work we 
use both models, depending on the availability of 
high temporal resolution data.  

The three low-resolution features, when mapped in 
pseudocolor onto RGB color space, are shown in 
figure 3, and conveys the power of feature-space mapping 
of DCE-MRI data – just as a color picture conveys 
additional information compared to a black-and-white 
image, the feature-space mapped image conveys additional 
information that is simply not available in any single MRI 
image.  

Mathematically, we denote the single voxel time series as 
vector ܠ ൌ ൛ݔሺ݊ሻ ห ݊ א ሾ1, ܰሿሽ and the entire time-
resolved volume as the set of single-voxel signals ܆ ൌ൛ܠ| א  ࣪ൟ. Let the corresponding temporal feature vector 
be  ી ൌ ൛ߠሺ݂ሻห ݂ א ࣠ሽ, where each ݂ represents a 
temporal response feature from the parameter set ࣠ ൌሼܮܤ, ,ܧܲ  ሽ as in figure 2 above. Later we will addܥܷܣ
more perfusion features to , depending on the time 
resolution available - like mean transit time (MTT), rise time 
and decay rate of wash-out phase (߬).  

The MR volume contains several tissue regions with 
differing temporal response characteristics. We will denote 
the different tissue classes by membership to the label set  ࣦ ൌ  ቄ݊ݎ݁ݒ݈݅ ݈ܽ݉ݎ, ,ݎ݉ݑݐ ݄݃݊݅ܿ݊ܽ݊݁ ݁ݎݑݐ݈ܽݑܿݏܽݒ,ݎ݉ݑݐ ݄݃݊݅ܿ݊ܽ݊݁݊݊ ቅ 
and the number of tissue types as set cardinality |ࣦ|. 
We assume that time-response models are available for each 

tissue class, e.g. piecewise linear models9. Denote these 
dynamic models by model functions ଵ࣮ … |࣮ࣦ|, such that the 
time series at a voxel of tissue class ݈ is given by ܠ ൌ࣮ሺીሻ  
Each model relates the unknown perfusion parameters – e.g. 
MTT, ߬, ,ܧܲ  .etc – to the time series at the voxelܮܤ

Figure 3: RGB of feature space extracted from DCE-MRI

Figure 1: Typical plot of time-resolved MR signal of 
various tissue classes before (1st time point) and after 
injection of contrast agent Gadoxetate Disodium. 

Figure 2: Schematic of contrast uptake in liver tissue, (a) a simple 
model, and (b) full perfusion model. When few time points are 
available, it is more appropriate to use model (a). 
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By denoting the set of these models a ࣮ ൌ  ሼ ଵ࣮ … |࣮ࣦ|ሽs 
and the set of all temporal features as દ ൌ ሼીሺሻ| א ࣪ሽ, 
the relationship between the observed time series data and  
temporal parameters can be conveniently expressed as  ܆ ൌ  ࣮ሺદሻ 

The above feature-space mapping is a powerful way to 
visualize the time-resolved data, because various tissue 
classes appear much better discriminated than in the original 
MR images, from any single time point. However, the 
feature space construct is also a rich source of data for the 
purpose of tissue classification and segmentation.  

Tissue Classification and Segmentation of Time-Resolved 
DCE-MRI Data 

Tissue segmentation from MRI modalities10,11,12 is a mature 
field now, and several good tools exist in the community. 
However, these tools work on 3D spatial but non-time-
resolved data, and are therefore unable to exploit the 
additional benefits provided by time-resolved data. Methods 
that do work on time-resolved data employ simple clustering 
algorithms along with supervised seed growing10 which 
require significant user input and can be erroneous in 
presence of inhomogeneity or local texture. On the other 
hand, several approaches to analyzing 1D time-resolved 
signals were reported, notably in MR perfusion9,11,13. It has 
been shown, much like our feature map above, that various 
dynamic perfusion parameter maps provide important 
information regarding the dynamic response of tissue. 
Although most of these methods were developed for brain 
imaging, some have successfully been adapted for use in 
more general cancer imaging scenarios11. Voxel-by-voxel 
classification can certainly be performed using standard k-
means clustering techniques14 but this is problematic in 
presence of noise and lack of temporal resolution.  

Mathematically the classification task can be formalized as 
the mapping of the 4D feature-space volume દ onto the 
tissue label set  ࣝ  દ ื  ࣦ|࣪| 
such that ࣝሺሻ    ࣝሺࣂሻ represents the tissue class label 
assigned to the -th voxel. 

The segmentation algorithm finds the class labeling which 
satisfies two orthogonal constraints: 

1. For each voxel , its class label ࣝሺሻ must be 
equal, as far as possible, to the label predicted by a 
simple independent voxel-wise k-means classifier14. 

2. The set of all labels for the image must respect 
known tissue boundaries and be spatially 
contiguous. 

The reason for the second constraint is that in the presence 
of noise and other artifacts, the single-voxel estimate of 

tissue class can be unreliable, and additional spatial 
constraints can help to regularize the process. To achieve 
this, we perform the following classification task. Define the 
augmented feature vector at each voxel  as  

ીഥ ൌ ێێێۏ 
ۍ ી݀ݎܿݔ݀ݎܿݕ݀ݎܿݖۑۑۑے

ې
 

A k-means nearest neighbor classifier is used to cluster the 
set of feature space દ into |ࣦ| classes, by minimizing the 
ratio of intra-cluster distances to inter-cluster distances14. 
Note that without the augmentation described above, the 
normal voxel-wise classifier would result; augmentation 
provides the classifier with additional spatial features which 
help in satisfying constraints (2). Consequently, our 
algorithm is less sensitive to noise, and produces more 
contiguous regions with smoother tissue boundaries. Note 
also the complete absence of isolated regions of falsely 
labels tissue.  

A comprehensive software suite was written in MATLAB to 
implement the above segmentation scheme. This software is 
currently being tested and evaluated on the Rabbit HCC 
data. A screenshot illustrating the software’s functionality is 
shown in figure 4. The software has the following modules: 

i) Semi-supervised Liver Segmentation Module: User is 
presented with a series of axial scans of the 3D volume, and 
asked to place a small number of boundary points to help the 
software to segment the liver volume. This procedure was 
necessitated by the difficulty of completely unsupervised 
automatic liver segmentation, which sometimes failed. It not 
necessary to manually draw ROIs around the liver. A small 
number of user-input points in the perimeter of the liver in a 
small number of slices is sufficient to accurately delineate 
the liver mass. 

ii) Time-series analysis: The voxels contained within the 
segmented liver volume are then passed to the time-domain 
analysis module, which returns feature-space quantities as 
described above. A full classification and segmentation is 
then performed on this data using the augmented feature-
vector approach above, and the detected clusters are 
presented to the user in color maps.  

iii) Semi-supervised tumor segmentation: We implemented 
instead a semi-supervised approach, whereby 4-way 
segmentation is first performed on the liver mass, and the 
user is then asked to click on detected tumor regions. Again, 
this does not involve laborious manual drawing of ROIs 
around the tumors; the user simply selects tumor regions by 
clicking within the appropriate detected segments.  

iv) 3-way tumor segmentation module: The segmented tumor 
regions are then refined with morphological filters to remove 
boundary inconsistencies, holes and erroneous isolated 
voxels. The resulting regions are then processed using the 
same time-resolved feature clustering method used in ii) 
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above, but this time using the 3 classes of interest – normal 
liver, enhancing tumor, non-enhancing necrotic tumor. Since 
the manual intervention has already removed the sources of 
error described in iii), this module is completely automatic. 

v) Biomarkers: Finally, the total volumes of both enhancing 
and non-enhancing tumor regions are computed, and 
computer-aided viability and tumor burden scores are 
presented as per tumor burden ൌ total volume of enhancing nonenhancing tumors computed viability ൌ  volume of enhancing tumorstotal volume of enhancing   nonenhancing tumors ൈ 100 

Perfusion-related quantities can now be reported separately 
for each tissue class ሼmean െ enhancement, mean െ τ,mean െ risetimeሽ   for all  ݈ א ࣦ 

 

III. RESULTS 
Significant preliminary work has been completed in our lab 
towards a new segmentation-based scheme for obtaining 
volumetric biomarkers of HCC. Our method was 
developed and tested on data from a pre‐existing 
study at Johns Hopkins University involving 
hepatocellular carcinoma (HCC) grown in a 
Rabbit model4. Rabbit models of HCC have been 
shown to demonstrate a physiology similar to that 
of humans4. The above DCE-MRI data was 
obtained as part of a previous IRB approved study 
to assess MR diffusion characteristics of HCC 
before and after TACE. The DCE-MRI exams 
were obtained using a standard T1-weighted MR 
acquisition sequence, with the following timed 
phases: pre-contrast phase (0s), arterial phase 
(20s), portal-venous phase (60) and delayed phase 
(120s). Tumor size and degree of necrosis was 
determined through pathologic dissection in all 
animals. Dissections were performed by 
pathologists under guidelines and techniques that 
ensure accurate and reproducible measurement of 
tumor size and degree of necrosis, and this 
pathology data served as the gold standard. A novel liver-
specific Gadolinium-based contrast agent Gadoxetate 
Disodium (Eovist®) was intravenously injected.  

A typical visualization and segmentation result from Rabbit 
data are shown in figure 4. Note the performance of the 
method at various stages of operation, from initial clustering 
to final segmentation of tumors. At this stage fully validated 
quantitative data are not available. However, a preliminary 
evaluation of tumor volumes and overlap with pathology 
data indicate a Pearson correlation of 85%. This is 
considered relatively good agreement by radiologists, given 

the vast differences in pathology and MR imaging 
approaches. 

IV. DISCUSSION AND FUTURE WORK 
Our software must be significantly expanded and modified 
before it becomes useful for human clinical applications: 
i) Extension to higher temporal resolution data: current 
HCC data have only 4 time points – 1 pre-contrast and 3 
post-contrast, with a time window of 2 minutes. This is 
clearly inadequate for accurate characterization of dynamic 
response of liver tissue, which is known to have a wash-in / 
wash-out duration exceeding several minutes.  

ii) We will investigate autoregressive (AR) and AR+moving 
average (ARMA) time-domain models16,17, which can 
provide parametric features independent of vascular 
perfusion models and might be useful for clustering 
purposes. Our methods are agnostic to the pharmacokinetics 
of a particular contrast agent as well as to the choice of the 
temporal response model, whether MR perfusion models or 
AR/ARMA, or any other model. 

iii) Removing the need for user input: Inherent variability 
of signal and intensity within liver tissue, presence of 
vascular as well as tumor tissue, instrumentation noise, 
motion and other artifacts, etc necessitated our semi-

syupervised approach, but they can be overcome with 
additional effort and result in a completely automated 
segmentation algorithm. We can exploit tissue gradients and 
the difference in dynamic response, which we believe will 
be adequate for a suitable clustering algorithm to reliably 
perform the segmentation.  

Finally, our methods need to be validated on high-resolution 
human data, which will be acquired at Cornell Medical 
Center (New York, NY). For this purpose we will have 
access to both a retrospective human dataset as well as a 
proposed prospective MR study on human subjects recruited 

Figure 4: screenshot of HCC software functionality 
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from HCC patients at our hospital who are slated to undergo 
TACE treatment. We will correlate our computed results 
with the clinical outcomes already recorded as metadata 
within patients’ records, including clinical outcome scores, 
survival times and serological liver function tests (e.g. 
Billirubin, ALT and AST). These will be used in pairwise 
Pearson correlation analysis against our computed 
biomarkers. In addition, conventional radiologist readings 
under both RECIST and EASL‐modified WHO criteria will 
be tabulated for all subjects and correlated against our 
results.  
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