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Abstract— In order to facilitate the study of neuron migra-
tion, we propose a method for 3-D detection and tracking of
centrosomes in time-lapse confocal image stacks of live neuron
cells. We combine Laplacian-based blob detection, adaptive
thresholding, and the extraction of scale and roundness features
to find centrosome-like objects in each frame. We link these
detections using the joint probabilistic data association filter
(JPDAF) tracking algorithm with a Newtonian state-space
model tailored to the motion characteristics of centrosomes
in live neurons. We apply our algorithm to image sequences
containing multiple cells, some of which had been treated with
motion-inhibiting drugs. We provide qualitative results and
quantitative comparisons to manual segmentation and tracking
results showing that our average motion estimates agree to
within 13% of those computed manually by neurobiologists.

I. INTRODUCTION

Recent advances in fluorescence microscopy have enabled

biologists to image cellular and subcelluar dynamic processes

in live cells with the use of florescent protein tagging. Neu-

ronal cell migration is one such biological process in which

time-lapse 3-D imaging has played a key role. Recently,

the centrosome, an organelle that plays a role in mitosis,

has been shown to also act as a predictor of neuronal cell

migration and possibly a coordinator of cytoskeletal dynam-

ics in the neuron; moreover, certain drugs have been shown

to inhibit centrosome motion and neuronal migration [1].

Thus, neurobiologists are interested in tracking centrosomes

in a live cell and examining the motion characteristics with

respect to both overall cell motion and the introduction

of various drugs. Due to the slow and laborious nature of

manual analysis, automated computational methods tailored

to specific biological phenomena and imaging modalities

are needed to address the high throughput of these imaging

systems.

Automated tracking of subcellular structures in confocal

imagery has been addressed in the literature [2]; however, the
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Fig. 1. Maximum intensity projections over z of a 3-D centrosome volume
at two different time points: (a)-(b) t = 0 minutes; (c)-(d) t = 40 minutes.
Regions of (a) and (c) delineated by boxes are enlarged in (b) and (d).
Individual centrosomes are indicated with arrows. Migration of the bright
cell soma in the middle of (a) and (c) can be seen by comparing its position
across the two images. Note the relatively low brightness of the delineated
cell in (a) and (c), whose detail can be seen when rescaled in (b) and (d).
The images in (a) and (c) are approx. 80 µm in width and height.

appearance and motion characteristics of different structures

vary widely, and thus a method developed for one type of

structure will not likely translate well to other structures.

A particle filtering method, which decouples the traditional

detection and tracking stages, has been proposed by Smal

et al. [3] for tracking microtubules, which appear as small,

elongated bright spots very different in appearance from

centrosomes. This method utilizes probabilistic appearance

models of the microtubules derived from the underlying

physics of microscopic image formation. Rogers et al. [4]

attempt to track subcellular particles of varying size by fitting

a 2-D polynomial model to the appearance of each structure

and discriminating based on the model parameters; however,

because this method allows a great deal of freedom in the

shape of tracked particles, we would expect it to follow many

non-centrosome objects in our data.

In this paper, we propose a method for detecting and track-

ing centrosomes tagged with green fluorescent protein (GFP)
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in time-lapse 3-D confocal image stacks. Our approach

consists of detecting candidate centrosomes, computing dis-

criminatory features based on the appearance characteristics

of typical centrosomes to refine this set of detections, and

applying a robust multi-target tracking algorithm known as

the joint probabilistic data association filter (JPDAF) [5] to

link the detections. We show the results of applying our

algorithm to a set of time-lapse 3-D image sequences of

mouse cerebellar granule cells treated with various drugs and

imaged with a spinning disk confocal microscope.

II. TECHNICAL APPROACH

Our approach to automated centrosome motion analysis

may be divided into two stages: (1) detection, and (2)

tracking. The goal of the detection stage is to locate all

centrosome-like objects in each frame of the time sequence.

The tracking stage then attempts to connect these detections

to form coherent tracks. The details of each stage are

illustrated in Figure 1 and outlined below.

A. Centrosome detection

In the detection stage, we first compress the 3-D volume

at each time step into a single 2-D image by computing a

maximum intensity projection along the z-dimension. There

are two reasons for working in 2-D for the detection stage:

(1) computation is greatly reduced compared to 3-D, and (2)

the resolution in z was significantly lower than that of x and

y in our datasets, which would necessitate interpolation in z
in order to compute certain features. It should be noted that

we later utilize the full volume to compute 3-D centrosome

positions.

We apply a Laplacian filter to this image, which helps

to accentuate small, bright, circularly-shaped regions in the

image [6]. We apply an adaptive threshold to the filtered

image by first computing the mean µ and standard deviation

σ of the intensity values in a small window of size NO×NO

surrounding each pixel. We exclude a smaller window of

size NI × NI around the peak in this computation in order

to prevent the peak itself from contributing to the window

statistics. Each pixel location whose value v is such that

v − µ

σ
> T (1)

for some threshold T is declared to be a candidate centro-

some location. We used NO = 30 and NI = 12 in our work.

We refine this set of detections by computing two ad-

ditional metrics for each candidate centrosome: (1) object

size and (2) local roundness. Object size is measured by

computing a scale-space representation of the pattern, akin to

the approach of Bretzner and Lindeberg [7]. Specifically, for

each candidate centrosome, we project the pattern onto a se-

quence of 2-D Laplacian-of-Gaussian operators at increasing

σ values. We then find the value σ0 at which the projection

is minimized (most negative). If σ0 /∈ [σL, σH ] for the scale

range defined by the limits σL and σH , then the detection is

discarded. In this work, we found (σL, σH) = (1, 8) to work

well.
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Fig. 2. Example of centrosome detection: (a) adaptive threshold image just
before comparing to T (Eq. 1); (b) detected candidate centrosomes using
threshold equal to 10. The refined set of detection after roundness- and
scale-based filtering is shown in Fig. 4(c).
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Fig. 3. Examples of roundness metrics computed for two different patterns
using (3).

Because centrosomes typically appear as round sphere-

like objects in our imagery, we use the local roundness of

each candidate detection as a discriminative feature. Local

roundness in 2-D can be defined as the constancy of a

pattern along various concentric circles centered about a

given point. We measure local roundness by first computing

the rotational autocorrelation of the candidate centrosome

pattern as follows. Let f(r, θ) denote the local 2-D pattern

in polar coordinates, centered about the detection location.

We define the rotational autocorrelation function Rff (φ) of

f by the following equation:

Rff (φ) =

∫ 2π

0

∫ r2

r1

f(r, θ)f(r, θ − φ)rdrdθ
∫ 2π

0

∫ r2

r1

f2(r, θ)rdrdθ
, (2)

where r1 and r2 are the inner and outer radii between

which the pattern is considered. Using this function, we

then compute a roundness metric ρ given by the following

equation:

ρ = 1 −

√

1

2π

∫ 2π

0

Rff (θ)dθ. (3)

The integral in (3) essentially measures the variance of

Rff (φ) (with an assumed mean of 1). For a perfectly

“round” object, ρ would evaluate to 1, since the variance

would be 0; on the other hand, for a random pattern, Rff (φ)
would approach a delta function and ρ would be close to

zero. We compare this roundness metric to a threshold Tρ

and discard the detection if ρ < Tρ. In our work, we used

Tρ = 0.92 and (r1, r2) = (0.2, 4.0) pixels. Examples of

roundness values are shown in Fig. 3.
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For each remaining detection, we compute the z-position

by first extracting the column of intensity values at the

corresponding (x, y) location from the original volume. We

then upsample this signal by a factor of 8 and smooth

using sinc interpolation. The z-position of the centrosome

is then taken to be the location where this signal reaches its

maximum. It should be noted that this approach would fail

to detect multiple centrosomes centered at the same (x, y)
location in the volume, and a more elaborate method should

be used to detect multiple centrosomes at a given (x, y)
location if overlap in z is suspected.

B. Centrosome tracking

Once we have the detections for each frame, we then take

the following approach to tracking the objects. Based on the

assumption that no centrosome will jump by more than a

predefined distance d between any two consecutive frames,

we first partition the set of all detections over the entire

sequence such that the Euclidean distance between any two

detections from different groups is greater than d. We then

apply the well-known JPDAF tracking algorithm [5] to each

group of detections, which is designed to handle multiple

targets, missed detections, false alarms, and measurement

noise.

The JPDAF algorithm requires a user-defined state-space

model that describes the motion of the objects to be tracked.

In our time-lapse sequences, we observed that the motion

of centrosomes seems to be characterized by bursts of

acceleration in (seemingly) random directions. We therefore

employed a Newtonian 3-D motion model that provides

for random acceleration in x, y, and z characterized by

independent Gaussian random variables. The state update

and observation equations for our model are as follows. Let

x denote the state vector

x = [ x y z ẋ ẏ ż ]T, (4)

where ẋ, ẏ, and ż are the velocities in the respective

directions. Then the state xk at time k is updated as

xk = Fxk−1 + Gwk (5)

where

wk ∼ N (0, I3), (6)

F =

[

I3 ∆t · I3

03 I3

]

, (7)

and

G = σa

[

∆t2

2
· I3

∆t · I3

]

+ σn

[

I3

03

]

(8)

where I3 is the 3 × 3 identity matrix and 03 is the 3 × 3
matrix of zeros. In (8), σ2

a and σ2
n are the variances of the ran-

dom acceleration and an additional position “noise” factor,

respectively, undergone by each centrosome in the x, y, and

z directions. Strictly speaking, a random acceleration model

alone (supplied by the σa term) should allow for any change

in centrosome position; nevertheless, including the σn term

instinctively provides a better model for describing small

“vibrating” motions observed in many of the centrosomes.

The observation zk = [ x′ y′ z′ ] our state-space model is

given by

zk = Hxk + vk (9)

where

vk ∼ N (0, σ2

mI3), (10)

and

H =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



 . (11)

The variables x′, y′, and z′ are the observed 3-D coordinates

of the centrosome, and σ2
m is the variance of the measure-

ment noise resulting from small errors in locating the center

of the centrosome.

We initialize the tracker with starting locations by se-

lecting the N (at most) brightest objects from each group

of detections in the first frame of the sequence (we found

N = 6 to work well). For each target at each time instant,

the JPDAF algorithm computes the probability of missed

detection, indicating the likelihood of having failed to detect

the target in the current frame. In our implementation, we

retire a track if this probability is greater than 0.5 for four

consecutive frames. In future work, the initialization stage

may be improved by utilizing more than just the first frame

in case a detection was missed in that frame.

III. DATA

Image data was collected from nine separate experiments,

where each experiment was designed to capture time-lapse

3-D imagery of a culture of cerebellar granule neurons

(CGNs) over the course of several hours. The CGNs were

cultured in conditions that supported cellular motility, and

an expression vector was introduced to the CGNs to encode

the centrosomes. At specified times during the experiment, a

sequence of 3-D volumes of size 512×512×15 voxels was

imaged using a Marianas spinning disk confocal microscope.

The resolution of the volume was 0.157 µm/pixel in x and y
and 1 µm/pixel in z, resulting in an imaged volume of size

80 × 80 × 15 µm.

Sequences of 20 3-D frames were acquired at a rate of

one frame per 16 seconds, and such sequences were captured

at times t < 0, t = 10 min, t = 40 min, and t = 60 min,

where a treatment was (in some cases) introduced to the cells

at time t = 0. Two different treatments were used in these

experiments: Jasplakinolide, a cell permeable actin stabilizer,

and Blebbistatin, a cell permeable Myosin II inhibitor. These

drugs were used to study the role of the actin cytoskeleton

in centrosome and somal motility. Each of these drugs was

used in three of the experiments. In order to create a control

set, three additional experiments were conducted in which

no drug was introduced.

IV. RESULTS

We applied our algorithm to sequences from the nine

experiments described above. In order to illustrate the output

of our algorithm, we first show examples of computed

centrosome tracks for a 20-frame sequence prior to being
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Fig. 4. Centrosome tracks from a single sequence: (a) whole volume in 3-D;
(b) zoomed view of a single track in 3-D; (c) track starting points projected
onto x-y plane and superimposed on first frame of sequence. Shadows are
shown on the x-y plane for shape emphasis.

TABLE I

TOTAL NUMBER OF CENTROSOMES TRACKED

Treatment
Blebbistatin Jasplakinolide control set

Proposed algorithm 552 318 395

Manual segmentation 559 471 542

treated with Blebbistatin. 3-D centrosome tracks within the

volume are shown in Figs. 4(a) and 4(b). In Fig. 4(c),

we show the initial centrosome positions in the x-y plane

superimposed onto the maximum intensity projection (over

z) of the first frame of the sequence.

We compared the results of our algorithm with those

generated from manual segmentation and tracking of the

centrosomes by neurobiologists. Because manual data about

individual centrosome positions was not available, we were

only able to compare aggregate velocity measurements.

There are two main factors that account for discrepancies

between the results: (1) the manual measurements were

performed on 2-D projection images rather than the 3-D

volumes themselves, thus ignoring one dimension of motion;

(2) the manual segmentation discarded centrosomes that were

not contained within the soma. Table I shows the total

number of centrosomes tracked over all sequences for each

treatment. Our algorithm tended to reject many low-contrast

centrosomes that were identified in the manual segmentation,

resulting in fewer tracked centrosomes on average. We

computed average velocity and peak velocity averaged over

all centrosomes at each time step for the different treatment

types, shown in Fig. 5 for comparison.

V. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithm for detecting and tracking

centrosomes in 3-D time-lapse imagery. Although we tracked

fewer centrosomes than were tracked manually, we were able

1 2 3 4

0.01

0.015

0.02

a
v
g

. 
s
p

e
e

d
 (

µ
m

/s
e

c
)

time

(a)

1 2 3 4

0.005

0.01

0.015

0.02

time

a
v
g

. 
s
p

e
e

d
 (

µ
m

/s
e

c
)

(b)

1 2 3 4
0

0.02

0.04

0.06

time

a
v
g

. 
p

k
. 

s
p

e
e

d
 (µ

m
/s

e
c
)

 

 

(c)

1 2 3 4
0.01

0.02

0.03

0.04

0.05

time

a
v
g

. 
p

k
. 

s
p

e
e

d
 (µ

m
/s

e
c
)

 

 

Bleb

Jasp

control

(d)

Fig. 5. Plots of centrosome average speed and peak speed averaged over all
centrosomes in each treatment type: versus experiment time: (a), (c) results
produced by the new algorithm; (b), (d) manual results. Times on the x-axis
are denoted by 1 (t < 0), 2 (t = 10 min), 3 (t = 40 min), and 4 (t = 60

min).

to sample and track the population such that our aggregate

motion metrics agree with manually generated aggregate

results to within 13% for average centrosome speed and

to within 34% for peak centrosome speed. In these studies,

such metrics are of greater importance from an experimental

standpoint than the individual tracks themselves. Thus, we

believe that our proposed algorithm would be useful to neu-

robiologists in analyzing the large volumes of data necessary

for advancing the study of neuronal migration.

In order to more fully study cell migration from a bi-

ological perspective, it is necessary to examine not only

centrosome motion but also the motion of the cell bodies

themselves. In this work, we focused only on centrosome

motion; thus, it will be of interest in future work to perform

automatic segmentation and tracking of cell somas in the

same time-lapse imagery. Furthermore, centrosome motion

should be correlated with the motion of their respective soma

in order to make observations about predictive behavior and

develop biological models.
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