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Abstract— A well defined set of design criteria is of great
importance in the process of designing brain machine inter-
faces (BMI) based on extracellular recordings with chronically
implanted micro-electrode arrays in the central nervous system
(CNS). In order to compare algorithms and evaluate their
performance under various circumstances, ground truth about
their input needs to be present. Obtaining ground truth from
real data would require optimal algorithms to be used, given
that those exist. This is not possible since it relies on the very
algorithms that are to be evaluated. Using realistic models of
the recording situation facilitates the simulation of extracellular
recordings. The simulation gives access to a priori known signal
characteristics such as spike times and identities. In this paper,
we describe a simulator based on a library of spikes obtained
from recordings in the cat cerebellum and observed statistics of
neuronal behavior during spontaneous activity. The simulator
has proved to be useful in the task of generating extracellular
recordings with realistic background noise and known ground
truth to use in the evaluation of algorithms for spike detection
and sorting.

I. INTRODUCTION

One of the current promising trends in the field of brain-

machine interfaces (BMI) is development toward long term

extracellular recordings with chronically implanted multi-

electrode arrays (MEA) in the central nervous system (CNS).

Detection and classification of spikes are of major impor-

tance to successful implementation of a BMI based on

extracellular recordings.

The algorithms chosen for spike detection and classifica-

tion will determine the design criteria for signal acquisition

hardware. However, the task of choosing an algorithm is not a

trivial one making qualitative evaluation of their performance

necessary.

In order to evaluate the performance of algorithms for

spike detection and classification under various hardware

implementations, we have chosen to implement a simulator

to generate extracellular recordings. Simulation gives access

to ground truth about spiking activity in the recording and

thereby facilitates a quantitative assessment of algorithm per-

formance since the characteristics of the signals are known

a priori.
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Similar approaches have been taken by others to perform

the task of algorithm assessment. However, not many sim-

ulators have been fully published, making it necessary for

researchers to implement their own versions. Previous works

include [1], [2] and [3], where simulators based on the same

ideas as ours were used. A fully documented simulator based

on analytical models has been published in [4]. In contrast,

we have developed a simulator based on large amounts of

extracellular recordings that is more readily applicable to our

experimental setups.

The simulator described in this paper is fully documented

and will be published for general use under a Creative

Commons license [5] as a library of MATLAB R© functions

along with an extensive and expandable spike library. The

performance of the simulator has been successfully verified

by comparing features such as firing statistics, power spectral

density and autocorrelation of simulated and real signals.

II. MODELS

A. Neuronal Distribution and Density

Neuronal density varies among structures in the CNS. We

have chosen to use a modified density estimate provided by

[6]. In this work, the number of hippocampal CA1 pyramidal

cells contained within a cylinder of a given radius was

estimated.

Our modification involves replacing the cylinder with a

sphere of equal radius but assuming the same number of

neurons. The motivation behind this modification is that

we want to simulate activity in CNS structures that do not

necessarily have the prominent laminar organization that is

encountered in the hippocampus [7]. We further assume

an isotropic neuronal distribution. Figure 1 shows how the

recording environment is modeled.

B. Unit Isolation

In the default setup of the simulator we assume the volume

surrounding the electrode to be divided into two parts; “near

field” and “far field”. The surfaces of the inner and outer

spheres shown in Figure 1 bound the two volumes. Spikes

coming from neurons within the near field and the far field

are referred to as target units and noise units respectively. We

assume a small amount of active target units to be present

in the near field and we assume those to be separable from

the noisy background activity contributed by the noise units

in the far field.
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Fig. 1. A model of the recording environment. The white dots in the far
field represent noise units. Target units are placed in the near field.

C. Extracellular Spike Amplitude

The variation in spike shape and amplitude has been

studied by [6], [8] and [9]. Our amplitude model for the noise

units is based on the result in [9] that at large distances (in

the electrode’s far field), the amplitude decays as 1/rn where

n is between 2 and 3. We have not included the spatially

dependent lowpass filtering also described in [9] since the

spike prototypes in our library are obtained from actual

recordings and are therefore assumed to have undergone this

filtering already.

Based on observations of simulated and real signals in

combination with the work mentioned above, we model the

normalized spike amplitude decay as

A =

{

1
(Kr+1)2 for noise units

1 for target units
(1)

where K is a scaling factor that specifies the rate of decay.

Within the near field of the electrode we currently assume a

constant amplitude of one.

D. Inter Spike Interval and Refractory Period

To generate spike times for our target and noise units,

we assume a renewal process with gamma distributed inter

spike intervals (ISI). An advantage of this assumption is that

both the absolute and relative refractory periods are directly

implemented in the model [10]. The spike times τp(n) for

unit p are thus given by

τp(n) =

n
∑

j=1

ISIj , ISI ∼ Γ(k, θ) (2)

where k and θ are the shape and scale factors of the gamma

distribution respectively. The value of the shape factor varies

among units with different mean firing rates f , but an

appropriate value can be obtained by estimating parameters

in a real ISI distribution (see Figure 4). By definition of the

gamma distribution, the scale factor is determined by the

mean ISI, ISI , and shape factor k

θ =
ISI

k
=

1

fk
. (3)

E. Noise

We assume that the background noise mainly consists of

the sum of scaled spike trains generated by noise neurons in

the far field of the electrode. The scaling factor is the same as

the amplitude decay in Equation 1. Apart from the amplitude

decay, the noise contributing spike trains are generated in the

same way as the target unit spike trains. Instead of assuming

a common mean firing rate for all noise units, the firing

rate for each noise unit is drawn from a uniform distribution

bounded by values given by the user.

We assume thermal noise to be present at the input of

the recording amplifier. The root-mean-square (RMS) of the

thermal noise can be expressed as
√

ē2
n =

√
4kTRB (4)

where k is Boltzmann’s constant, T is the temperature, R is

the input resistance of the recording system (electrode and

amplifier) and B is the system’s bandwidth [11]. The values

of those parameters can be adjusted to match an actual setup,

but typical values for an implanted system (T = 310K , R =
1MΩ, B = 10kHz) will give RMS values around 13µV at

the amplifier input.

F. Model limitations

The models have limitations in the assumptions of the

dynamics and stationarity of the underlying processes. Cor-

relation between different spike trains and bursting activity is

not accounted for and we assume constant spike morpholo-

gies throughout the duration of the simulation. Further, non-

spiking activity (passive signaling [7]) is not accounted for

and the assumptions of isotropic neuronal distribution and

absence of amplitude decay in the electrode’s near field are

simplifications worth bearing in mind.

III. SPIKE LIBRARY

Spike waveforms were detected in and extracted from

recordings performed in various regions in the cat cerebellum

[12] and sorted using the open-source software package

Chronux [13][14]. Thresholds for spike detection were set

automatically using the method described in [1]. The average

waveforms were upsampled to 100ksps and stored. Executing

this process on an ensemble of recordings containing well

isolated single unit activity resulted in a library consisting

of 85 different waveforms.

To obtain a qualitative measure of the characteristics of the

spike library, we looked at features such as spike duration,

frequency contents and general morphology of the stored

spikes. The results of the frequency analysis are not shown

here since they correlate strongly with spike duration. This

examination showed us that the library is sufficient as a basis

for modeling the recordings needed for our future algorithm

assessment.

We define spike duration as the time period where the

absolute amplitude of the largest phase of the spike is above

half its peak value. The spike duration histogram in Figure 2

shows that the vast majority of spikes have durations that
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classifies them as fast spikes [8]. This provides us with

an upper bound for testing the algorithms since fast spikes

are assumed to pose the biggest challenge to them and is

therefore regarded as a desirable feature. Figure 2 also shows

five representative spikes from the library.
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Fig. 2. Spike duration histogram (upper) and five spike from the spike
library that demonstrate various spike morphologies present in the library
(lower).

IV. ALGORITHM

The basic ideas behind the simulation algorithm are in-

spired by the simulator described in [1]. The algorithm is

summarized in Algorithm 1.

The user provides the algorithm with input such as du-

ration of the recording (D), sampling rate (fs), number

of target neurons (Nu), standard deviation of physiological

background noise (σn), parameters of thermal noise (T , R,

B), mean firing rate of target units (fu), a range of firing

rates for noise units (fn) and rate of amplitude decay in far

field (K). For each noise neuron, a firing rate is drawn from

a uniform distribution bounded by the given values. In the

case of multiple target units, the mean firing rates of the

individual units can be set separately.

For each of the target units, spike times are generated

(Equation 2) and a random spike waveform is chosen from

the spike library. The waveform is then added to the record-

ing with unchanged amplitude at the obtained spike times.

To generate the background noise, each noise unit is

assigned a random position in the far field of the recording

electrode (see Figure 1) and a random firing rate is chosen.

The amplitude of the unit is then derived from it’s distance

from the electrode tip (Equation 1). The noise units’ spike

times are generated in the same way as the target units’ and

they are added to the recording trace in the same manner as

well. White noise is generated according to Equation 4 and

added to the recording.

The output of the simulation is the spike times and labels

of all (target) spikes in the recording, the simulated recording

and background noise as well as the actual waveforms of the

target units as taken from the spike library.

V. VERIFICATION OF PERFORMANCE

A. Methods

To evaluate the performance of the simulator, we selected

a set of segments from our recordings and roughly estimated

Input: Duration of recording, sampling rate, number of

target units, standard deviation of physiological

noise, thermal noise parameters, mean firing

rates, rate of amplitude decay in far field.

Output: Target unit spike times, entire recording, noise

component of recording, target unit

waveforms.

foreach Noise/target unit P do
Generate a spike train sp(t) of N spikes wk with

amplitude Ap (Equation 1) occurring at τp(n)
(Equation 2):

sp(t) = Ap

N
∑

n=1

wk(t − τp(n)) , k ∼ U(1, L)

where k is the index of the selected spike waveform

and L is the number of spikes in the library.
end

Add the spike trains and thermal noise e(t) to obtain

the final signal v(t):

v(t) =
P

∑

p=1

sp(t) + e(t)

Algorithm 1: The extracellular recording simulator.

features such as number of separable units, mean firing

rates and level of background noise. In order to try to

mimic the real recordings, these estimates were used as

input parameters to the simulator. Since the modeling of

the background noise has proved to be the most challenging

task in the implementation, we focused our attention toward

segments with low target unit activity and low signal-to-noise

ratio (SNR). We then compared the autocorrleation [3] and its

Fourier transform, the power spectral density (PSD), for real

and simulated signals to get a qualitative assessment of the

similarities. The PSD was estimated with Welch’s method.

Results from both analyses (averages over four segments of

data) are shown in Figure 3 to facilitate comparison with

results from earlier studies. To evaluate the validity of the

assumption of gamma distributed inter spike intervals, we

fitted a gamma distribution to inter spike intervals obtained

from in-vivo recordings.

To demonstrate the usefulness of the simulator in the

task of calculating the probability of detection and false

positives in spike detection, we ran a batch of simulated

signals through a spike detection algorithm and calculated

the resulting probabilities.

B. Results

The comparison between the power spectral densities of

the real and simulated signals revealed strong similarities

(see Figure 3(a)). The densities resemble those obtained by

[8] when studying frequency contents of background activity

in extracellular recordings.
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(a) Power spectral density of real and simulated recordings.
The simulation parameters were Nu = 5, fu = 10, fn ∼

U(1, 50), σn = 0.2, K = 0.05.
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(b) Autocorrelation of real and simulated recordings.

Fig. 3. A comparison of real and simulated recordings

The properties of the PSD are influenced by the modeling

of the background noise. Assuming varying activity among

neurons and assigning random mean firing rates to the noise

neurons gave a good match.

The autocorrelation of the simulated and real signals (Fig-

ure 3(b)) showed strong similarities. Reference [3] reported

significant autocorrelation at delays up to around 1.2 ms.

The shorter interval in our results is mainly caused by the

fact that our spike library is dominated by fast spikes. We

ran simulations with synthetic spikes of various durations

as well and saw a clear connection between the duration of

significant autocorrelation and “dominating” spike duration

in the library.
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Fig. 4. Measured ISI during spontaneous activity of a single neuron. The
parameters of the fitted gamma distribution are k = 6.4 and θ = 0.047.

Figure 4 shows a histogram of measured ISI during typical

spontaneous activity of a single neuron in the cat cerebel-

lum. The histogram and the fitted gamma distribution show

close resemblance and support the assumption of gamma

distributed ISI [10].

Figure 5 shows a short segment of a simulated signal and

demonstrates the usability when testing spike detection with

a threshold crossing criterion. In this case, the probability of

detection and false positives was PD = 95.35% and PFP =
4.13% respectively.

VI. CONCLUSIONS AND FUTURE WORK

A simulator based on extracellular spikes and observed

statistics of neuronal firing has been implemented and tested.

The simulator has proved to be useful for providing sim-
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Fig. 5. A short segment of a simulated recording. The diamonds (⋄) and
triangles (∇) at the bottom indicate the beginning of spikes belonging to
two target units present in the recording (ground truth). The arrows at the
top indicate detected spike times obtained with a double amplitude threshold
(dotted lines). The circles and crosses at the top indicate false positives and
missed spikes respectively.

ulated extracellular recordings to use in the evaluation of

algorithms for spike detection and sorting.

The simulator will be fully published along with an ex-

pandable spike library. In [14], some problems behind diverse

conventions in methodology are mentioned. We believe that

a joint effort would make the resulting research more straight

forward and applicable. Our aim is to establish an open venue

for researchers to submit their spike libraries and additions to

the algorithm. Increased size of the library and more detailed

information on specific regions in the CNS will facilitate the

simulation of activity in specific areas of the CNS.

Reducing the limitations of the simulator is a work in

progress. We plan to investigate appropriate and biologically

valid ways of modeling the correlation between target units

and implement time-varying firing statistics. These features

will be added to the simulator as they come along.
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