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Abstract— Multiphoton calcium fluorescence imaging has
gained prominence as a valuable tool for the study of brain cells,
but the corresponding analytical regimes remain rather naive.
In this paper, we develop a statistical framework that facilitates
principled quantitative analysis of multiphoton images. The
proposed methods discriminate the stimulus-evoked response of
a neuron from the background firing and image artifacts. We
develop a harmonic regression model with colored noise, and
estimate the model parameters with computationally efficient
algorithms. We apply this model to in vivo characterization
of cells from the ferret visual cortex. The results demonstrate
substantially improved tuning curve fitting and image contrast.

I. INTRODUCTION

Multiphoton fluorescence imaging (MFI) has established

itself as a valuable tool for real-time in vivo imaging of

biological systems in the last decade [1]. It is the only

technique that allows recording the activity of a large popula-

tion of neurons simultaneously with subcellular resolution. A

multiphoton microscope excites fluorophores in a biological

sample using pulsed lasers, which leads to the emission of

a fluorescence signal. A focussed laser beam is scanned in a

raster pattern over a 2-D or 3-D region, producing an image

typically spanning hundreds of cells. Highly informative and

quantitative analyses related to a range of biological systems

can thus be obtained from MFI data.

Besides other applications, MFI has been used for the

characterization of brain structure and function [2]. Its ability

to scan a large cell population enables us to map the neuronal

and astrocytic network architectures [3], [4]. Its high spatial

resolution can be used to study subcellular structures on

the scale of dendritic spines [5], while its high temporal

resolution allows the analysis of calcium waves and other

cell and network dynamics [6]. With some post-processing,

we can also obtain neuronal firing rate estimates comparable

to those from electrophysiological recordings [7], [8].

The methods for the analysis of time series data generated

from these calcium imaging datasets remain rudimentary.
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Sophisticated signal processing and statistical modeling tech-

niques are, however, required to extract maximum infor-

mation from MFI data given its complexity. A number of

artifacts that cause significant distortion to the data must also

be modeled so that the true cell response can be recovered.

We develop a novel statistical signal processing framework

for MFI data analysis in this paper, consisting of a harmonic

signal model with colored noise similar to [9], and numer-

ically efficient algorithms to estimate the parameters. We

demonstrate the proposed methods with MFI data obtained

from the ferret visual cortex as described below.

II. EXPERIMENTAL DESIGN

All experimental procedures followed have been approved

by the MIT Committee on Animal Care, and adhere to the

NIH guidelines for the Care and Use of Laboratory Animals.

A. Imaging

Multiphoton imaging of the fluorescent calcium indicator

Oregon Green Bapta (OGB) was performed in the visual cor-

tex of anesthetized ferrets, in vivo. Neurons were bulk-loaded

with OGB by intracortical injection of the AM-ester conju-

gated form of OGB using standard techniques [3], [4], [10].

Imaging was performed with a custom-made multiphoton

laser scanning microscope consisting of a modified Olympus

Fluoview confocal scan head and a titanium/sapphire laser

providing approx. 100 fsec. pulses at 80 MHz pumped by

a 10 W solid-state source [11]. Fluorescence was detected

using photomultiplier tubes in whole-field detection mode.

A 20×, 0.95 NA lens was used. Image acquisition was

accomplished using Fluoview software. Time series traces of

images (XYT) with a field-of-view of approx. 250×250 µm

were collected at 1 Hz. The images were taken from cortical

layer 2/3, which was readily distinguished from layer 1 on

the basis of the relative density of astrocytes and neurons.

B. Visual Stimulation

Visual stimuli were delivered via a 17" LCD display

placed 0.15 m away from the eyes of the animal. The stimuli

were generated with the Matlab software package using

the PsychoPhysics Toolbox [12]. The stimulation protocol

consisted of square-wave gratings with 100% contrast which

drifted at 3 Hz and rotated 10◦ every second (each data

frame). Thus the stimulus rotates 360◦ in 36 sec. and the

time series of the response of a neuron to this stimulus

approximates a full orientation tuning curve. This stimulus

was repeated three times to enhance the statistical reliability

of the observations. Prior to recording these responses, 10
image frames were acquired in the absence of any visual

stimulus to establish the baseline response level.
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C. Image Pre-Processing

Image files collected by MFI were imported into Mat-

lab and analyzed with custom routines. The cell bodies

were identified by inspection and outlined manually. To

avoid spillover from surrounding neuropil, which presumably

contains indistinguishable processes of both astrocytes and

neurons, conservative boundaries were defined. The relative

fluorescence, ∆Fk = (Fk − F0) /F0, was calculated, where

Fk is the kth time-sample of the measured fluorescence

intensity; F0 is the baseline fluorescence; k = 1, . . . ,K;

and K is the number of samples. Only cells with ∆F clearly

distinguishable from the neuropil were chosen for subsequent

analysis. Each pixel was treated independently, with each of

its time-samples corresponding to a certain stimulus state.

III. MODELING AND ESTIMATION

Conventional approaches to modeling MFI data consist of

averaging the measured fluorescence levels at an image pixel

over multiple trials and smoothing across 2-D space and time.

We adopt a generalized approach based on Fourier series

expansion to model the tuning curves. Our goal here is to

reliably separate the stimulus-dependent neuronal response

from background activity, noise and other artifacts in the

MFI time series data. It is therefore desirable to decompose

the response data into a deterministic stimulus-evoked and a

stochastic stimulus-free component, i.e.,

Fk = yk = sk + vk. (1)

Given the experimental conditions, we denote the periodic

orientation stimulus with φk = 2πk/τφ, where τφ = 36 sec.

is the period. With this stimulus, a suitable set of basis

functions to model the data can be defined in terms of a

family of sinusoidal harmonics. Then, the stimulus-evoked

response can be written in the form of a linear regression as

sk = µ+
H

∑

h=1

{ah cos (hφk) + bh sin (hφk)} , (2)

where H denotes the number of harmonics included in the

model, µ is the intercept, and ah and bh are the coefficients of

the hth harmonic term. In accordance with Fourier theory, this

sinusoidal basis can represent an arbitrary periodic function

with the appropriate model order, H . In practice, many

neurons and astrocytes, including those in V1, are known

to have a sinusoidal tuning curve. This characteristic makes

the model in (2) a natural choice, as a small H will suffice

to adequately model the observed cellular response to φ.

The stochastic component, vt, is a mixture of several noise

processes. A pth order autoregressive model, AR(p),

vk =

p
∑

m=1

cmvk−m + ǫk, (3)

can well approximate such a colored noise process. Here,

cm is the mth AR model coefficient with m = 1, 2, . . . , p,

and ǫk ∼ N (0, σ2
ǫ ) represents a zero-mean, independently,

identically distributed Gaussian process with variance σ2
ǫ .

We can express this formalism using matrix notation as

y = s + v = Xθ + v, (4)

where y = [y1, . . . , yK ]T are the measured fluorescence

levels; s = [s1, . . . , sK ]T and v = [v1, . . . , vK ]T are the

stimulus-evoked and stimulus-free components of y; X is

the regression design matrix containing the covariates in

(2) including the intercept; θ = [µ, a1, b1, . . . , aH , bH ]T

are the harmonic coefficients; ψ = [c1, c2, . . . , cp]
T are the

AR coefficients; ε = [ǫ1, ǫ2, . . . , ǫK ]T is the noise vector;

v ∼ AR(0,Γ); and Γ = E
[

(v − E [v])(v − E [v])T
]

.

The above formulation can be used to obtain best-fit

estimates of the model parameters. We use ordinary least

squares (OLS) estimation to obtain the estimates of the

regression coefficients, given by [13]

θ̂ =
(

XTX
)

−1
XTy. (5)

The confidence intervals at a given confidence level are

easily obtained for these estimates. For the ith coefficient,

θi, approximate P = 100(1 − α)% confidence intervals are

θ̂i − seθ,i tα/2,dθ ≤ θi ≤ θ̂i + seθ,i tα/2,dθ , (6)

where tγ,dθ is the γ th percentile point of the t distribution

with dθ = K − (2H + 1) degrees of freedom, and

seθ,i =

√

(XTΓ−1X)
−1

ii . (7)

Based on these intervals, we can design the t-test for the

significance of θi by defining the alternative hypothesis

H1 :

∣

∣

∣

∣

∣

θ̂i
seθ,i

∣

∣

∣

∣

∣

> tα/2,dθ . (8)

Thus θi makes a significant marginal contribution to the

model if the null hypothesis is rejected.

Using these OLS coefficient estimates, we obtain the esti-

mated stimulus-evoked response as ŝ = Xθ̂. Its approximate

100(1 − α)% confidence intervals are given by

ŝk − ses,k tα/2,dθ ≤ sk ≤ ŝk + ses,k tα/2,dθ (9)

where

ses,k =

√

(

X (XTΓ−1X)
−1

XT

)

−1

kk
. (10)

The residuals from the above OLS estimation procedure

yield the AR(p) process

v̂ = y − ŝ = y − Xθ̂. (11)

The AR coefficient estimates, ψ̂, of v̂, can be obtained by

applying any of a number of well-known techniques, and

the variance estimate, σ̂ǫ, of the residual white noise, ε̂ =
v̂ − Vψ, can be obtained similarly. The Burg algorithm,

which provides least squares estimates of ψ by applying the

Levinson-Durbin recursion, offers an efficient procedure. The

approximate confidence intervals for AR coefficients are

ψ̂i − seψ,i tα/2,dψ ≤ ψi ≤ ψ̂i + seψ,i tα/2,dψ , (12)
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where dψ = K − p are the degrees of freedom,

seψ,i =

√

σ̂2
ǫ

(

V̂TV̂

)

−1

ii
, (13)

is the standard error of the AR coefficient estimates, and

V̂ =







v̂−1 · · · v̂−p
...

. . .
...

v̂K−1 · · · v̂K−p






. (14)

The corresponding t-test for the significance of the ith AR

coefficient, ψi, is given by

H1 :

∣

∣

∣

∣

∣

ψ̂i
seψ,i

∣

∣

∣

∣

∣

> tα/2,dψ . (15)

The whiteness of AR residuals, ǫ̂k, can be tested using the

Ljung-Box portmanteau test, for which the test statistic is

Q = K(K + 2)

T
∑

τ=1

r2τ (ǫ)

K − τ
, (16)

where rτ (ǫ) = dτ/d0 is the normalized autocovariance,

dτ =
1

K

K−τ
∑

m=1

(ǫ̂m − ǭ) (ǫ̂m+τ − ǭ) (17)

and ǭ = E [ε̂]. The null hypothesis for the whiteness test is

H0 : Q ∼ χ2
α,T−p.

Thus, the estimates for the 2H+p+2 model coefficients,

{µ̂, θ̂, ψ̂, σ̂ǫ}, are obtained. The stimulus-evoked response es-

timate, ŝk, can now be used to reconstruct denoised images.

IV. RESULTS

In this section, we apply the techniques developed in the

previous section to the MFI data. The above model is applied

to the fluorescence time series, yk = Fk , obtained in response

to the stimulus, φk , at each pixel in the 256 × 256 image.

The estimates for the regression and AR coefficients, and

the signal and noise components of the data, are obtained.

No across-trial averaging or spatiotemporal smoothing is

performed to prevent any loss of information. We empirically

find that H = 4 and p = 8 provide good fits, and use these

values in this analysis. In our future work, we will optimize

the model orders by using the appropriate selection criteria.

As a representative example, Fig. 1(a) illustrates that the

model provides a good fit, ∆ŷk, to the measured relative

fluorescence, ∆Fk . Quantitatively, the relative root mean

square error is 7.8%. The AR process, vk, in Fig. 1(b)

captures the rest of the structure in the time series related to

background firing, noise and other processes independent of

the stimulus. From Fig. 1(c), the harmonic model provides

a smooth estimate, ∆ŝk, of the stimulus-evoked relative

response and captures the complex shape of the tuning curve.

The whiteness analysis of the AR residuals, ε̂, is important

to ensure that they are i.i.d. and normal, which would indicate

that the model is appropriate. Thus, in Fig. 2, we compare

the quantiles of the residuals to the normal distribution, and
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Fig. 1. Modeling the calcium fluorescence time series at an image pixel,
relative to the baseline fluorescence obtained from measurements in the
absence of the stimulus. (a) The recorded fluorescence, ∆Fk, over three
full-cycle repetitions of the stimulus, along with the fit, ∆ŷk , obtained with
our signal-plus-noise model. (b) The AR process, vk , and its fit, v̂k (top),
and the redisual white noise, ǫ̂k (bottom). (c) The response tuning curves
obtained from the measured data by averaging over the three trials, and from
the harmonic model, ∆ŝk, with the approximate 95% confidence intervals.
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Fig. 2. Analysis of the statistical characteristics of the residual noise, ǫk,
to determine its whiteness and normality. The autocorrelation function of
the residuals is shown along with the 95% confidence intervals for up to 30
lags. The inset shows the quantile-quantile plot comparing the probability
distribution of the residuals to a normal distribution.

find only minor deviations at the tails. The sample autocorre-

lation function, rτ (ǫ), substantially resembles that of a white

noise process within the 95% bounds given by ±2/
√
K . In

addition, it is found that the residuals pass the Ljung-Box

test (H0). This implies that the AR process has satisfactorily

captured the structure in the harmonic model’s residuals, and

all systematic variation in the data has been accounted for.

The stimulus-evoked and stimulus-free response components

have now been separated as desired. The former can be

used in further analysis to model the neuronal response

characteristics such as the orientation selectivity, preferred

and non-preferred orientations, and tuning depth from ∆ŝk.

It is also now straight-forward to reconstruct cellular

or population images from ŝk for each pixel. In Fig. 3,

we compare the ∆F images of a cell obtained from our

method with those obtained by conventional processing at

some selected value of the orientation stimulus. Note from

Fig. 1(c) that the maximum response of this cell occurs

near φ = 180◦. Significantly enhanced contrast and noise

suppression at both preferred and nonpreferred orientations is

obtained after applying the proposed method, allowing us to

observe the calcium dynamics in greater detail. This example

demonstrates the superior denoising capability and signal-to-

noise ratio improvement due to the proposed model.

V. CONCLUSION

We have presented a framework to model the time-series

data obtained from high-resolution multiphoton imaging of

live brain cells. The statistical model and algorithms for the

analysis of calcium imaging data proposed in this paper are

simple and efficient yet powerful and flexible. Separating

the signal and noise components in the time series data for

each pixel, our approach facilitates substantially improved

characterization of neuronal response characteristics and

denoising of cellular and population images. The framework

(a)   

0
°

(b)   

0
°

90
°

90
°

180
°

180
°

Fig. 3. Two-dimensional ∆F responses of a single cell at the specified
orientation. (a) With conventional processing (averaging across trials). (b)
The stimulus evoked response, ŝk, from the proposed model. The circle
shows the location of the cell body identified manually, and the scale bar in
(a) represents 10 µm. No spatial or temporal smoothing is applied in order to
show the raw data. The brightness is scaled to represent ∆F = [0, Fmax].

presented in this paper can be easily extended to a broad class

of imaging regimes with applications in biomedical systems

and other areas in engineering.
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