
  

  

Abstract—This paper investigates the feasibility of building 
muscle-computer interfaces starting from surface Electromyo- 
graphy (SEMG) -based neck and shoulder motion recognition. 
In order to reach the research goal, a real-time SEMG sensing, 
processing and classification system was developed firstly. Then 
two types of SEMG recognition experiments, namely 
user-specific and user-independent classification, were designed 
and conducted on seven kinds of neck and shoulder motions to 
explore the feasibility of using these motions as input commands 
of muscle-computer interfaces. In all 9 subjects took part in 
these experiments, 97.8% and 84.6% overall average 
recognition accuracies were obtained in user-specific and 
user-independent experiments respectively. The experimental 
results demonstrate that it is possible to build muscle-computer 
interfaces with neck and shoulder motions. In addition, the 
results of cross-time experiments designed to explore the 
relationship between training and accuracy in user-specific 
recognition indicate that users can interact accurately with 
computers using the defined motions only after four times 
training in different days. 

I. INTRODUCTION 
yoelectric control has fascinated many researchers 

for its applications range from rehabilitation to human 
computer interaction (HCI). In myoelectric control systems, a 
user’s intension can be measured from Electromyography 
(EMG) signals in the form of muscular activities, using 
surface EMG sensors in a non-intrusive fashion [1]. Detected 
muscle activities are identified as motion commands which 
can be used for controlling externally powered devices [2]. 
EMG signal detecting and processing technologies provide us 
with the opportunity to interact directly with human muscular 
activities. Many previous works [2]–[4] have demonstrated 
the feasibility of muscle-computer interfaces (MuCIs) as an 
interaction method in which user inputs are gestures, such as 
finger, hand, wrist, and arm movements. 

Due to the fact that the activation of neck, shoulder and 
back muscles can also control the orientation and posture of 
these body parts, it is possible to recognize neck and shoulder 
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motions with EMG measurements. Most efforts at measuring 
surface EMG signals in neck and shoulder regions have 
focused on medical diagnoses [6], occupational rehabilitation 
[7], and industrial ergonomics [8]. However, few previous 
studies considered the EMG-based neck and shoulder motion 
recognition for MuCI applications. As a rare example in this 
field, Moon et al. [5] proposed a wearable EMG-based HCI 
for wheel-chair users with motor disabilities, in which users 
can express their control commands with three kinds of 
shoulder elevation. 

In this study, we investigate the feasibility of building 
MuCIs starting from SEMG-based neck and shoulder 
motions recognition for healthy people in practical 
application. Section 2 introduces the approaches including 
the development of a real-time gesture recognition system, 
EMG signal acquisition and processing. Two types of SEMG 
recognition experiments, user-specific and user-independent 
classification, are conducted to recognize 7 kinds of neck and 
shoulder motions in section 3, and the experimental results 
for 9 subjects are given and discussed. We conclude the paper 
and point out our future research directions in the last section. 

II. METHODOLOGY 

A. System Architecture 
All our experiments were implemented on the EMG-based 

Real-time Gesture Recognition System, which was 
established and updated from our pilot studies [9] for finger, 
hand, wrist, arm gestures, or neck and shoulder motions 
recognition using multi-channel surface EMG signals. Fig. 1 
shows the system architecture including the hardware and 
software components. The operating principle of this system 
can be described as follows: First, the multi-channel EMG 
signals recorded on the activated muscles during motion 
performance are digitalized by an A/D converter for further 
processing on computer. Then, the computer discriminates 
the gesture with a SEMG pattern recognition algorithm 
consisting of data segmentation, feature extraction and 
classification. Finally, the classification results are shown on 
the graphic interface as visual feedback, and the recognized 
gesture can be translated into interaction commands. 

B. EMG Signal Acquisition 
1) Neck and Shoulder Motions: Taking into account the 

convenience of performance and natural senses in real 
application, seven kinds of neck and shoulder motions were 
selected as objects of the study. Fig. 2 shows the selected 
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motions, which include two neck rotation motions (turn left 
or right), and five shoulder motions (upward or backward 
movement with left, right, or both left and right shoulders). 
The acceptance of these motions was also confirmed by the 
participants of the experiments. 

2) Six-channel EMG Sensor Placement: In our experi- 
ments, six-channel surface EMG signals were measured by 
Delsys Myomoniter IV wireless sensor system with inbuilt 
band-pass filters (20-1000 Hz) and amplifier (60dB) in each 
channel. Two silver bar-shaped electrodes, with a 10mm x 
1mm contact dimension and 10mm electrode-to-electrode 
spacing, are embedded in each sensor. The EMG signal 
streams are digitalized by NI PCI-6010 16-ch D/A card (PCI 
slot) with the sampling rate 1 kHz. 

The six-channel EMG sensor positions are shown in Fig. 3: 
CH1 and CH2 are placed on the left and right region of the 
neck respectively for detecting the activities of left and right 
Sternocleidomastoideus; CH3 and CH4 are situated at left 
and right shoulder to detect the activities of Levator Scapulae; 
CH5 and CH6 are mainly used for detecting the activities of 
the muscles on back, for example, the Upper Trapezius. 

C. EMG Signal processing 
In this sub-section, the SEMG pattern recognition 

algorithms, from data segmentation to classification, are 
introduced. 

1) Data Segmentation: In order to recognize neck and 
shoulder motions effectively, the active segments 
corresponding to neck or shoulder movements in 
multi-channel EMG signal stream need to be captured 
automatically. A data segmentation method based on moving 
average algorithm and thresholding was designed to search 
the start and end points of each active segment [10]. First, the 
system calculates the average value of the six-channel EMG 
signals. Then, the moving average algorithm is applied with a 
window size of 60 points (60ms) on the squared average 
EMG stream. Next, a threshold is used for segmentation. The 
active segment begins when the moving averaged stream is 
above a given threshold and continues until all sample points 
in a 50ms time period are below the threshold. According to 
general knowledge on normal motions, a length eligible range 
(about 100-800ms) was defined. The active segments whose 
time lengths were out of this range were discarded as noises. 
Fig. 4 shows typical SEMG signal patterns of the 7 defined 

motions. The active segments are marked with white bars. 
2) Feature Extraction: In order to recognize neck or 

shoulder motions effectively, distinctive features that 
represent the specific motion pattern have to be extracted 
from the raw SEMG data. Various kinds of EMG features 
based on time and spectral statistics are used for myoelectric 
control in the literature. Our pilot study [10] demonstrated 
that the Mean Absolute Value (MAV) and Auto-Regressive 
(AR) model coefficients are well suited to SEMG pattern 
classification with high test-retest repeatability. Therefore, 
the MAV and third-order AR model coefficients of each 
channel were computed and used to form feature vector in our 
system. Hence, each active segment of six-channel EMG 
signals was converted into a 24-dimensional feature vector. 

3) Classification: Linear Discriminant Classifiers (LDC) 
[10] were adopted for feature classification in our system due 
to their low computational complexity and stable recognition 
performance in practical application. The classification 
software was designed with two functional modes: training 
and testing. In the training mode, feature vectors of each class 
were recorded and saved in a database as training data 
samples. While in testing mode, the system loaded the 
training data samples to train classifiers, and the well-trained 
classifiers were then used for the recognition of new motions. 
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Fig. 1.  The structure of neck and shoulder motion recognition system.

 
Fig. 2.  Seven kinds of defined neck and shoulder motions. 

 
Fig. 3.  Six-channel EMG sensor placemen. 

Fig. 4.  Illustration of data segmentation and typical signal patterns for 
each motion. 
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III. EXPERIMENTS AND RESULTS 

A. Experimental Settings 
Nine subjects, 5 males and 4 females, aged from 21 to 27, 

participated into the neck and shoulder motion recognition 
experiments. They all are healthy and have no history of 
neuromuscular or joint diseases and were informed of the 
associated risks and benefits specific to the study. 

The experiments consisted of two testing scenarios: user- 
specific and user-independent classification. In user-specific 
classification, training data and testing data were different but 
from the same user. Classifiers were trained and tested 
independently on data from each user. Each of the 9 subjects 
was required to participate into experiments for more than 
five times (five days, one experimental session per day). In 
each session, subjects performed the defined 7 kinds of neck 
and shoulder motion in a sequence with 20 repetitions per 
motion, and recorded the SEMG signals as training data 
samples firstly. Then they performed 20 testing samples per 
motion for classification and the results were recorded for 
later analysis. In the first session, the system loaded the data 
recorded in the current session to train the classifiers. From 
the second to the fifth sessions, the classifiers utilized in i-th 
session were trained with data samples collected in the 1st to 
(i-1) th sessions, in order to evaluate the test-retest 
repeatability of system in cross-time classification. 

In user-independent classification, the training data from 
one set of users were mixed together to train classifiers, 
which then were applied to recognize motions performed by 
another user [3]. As a preliminary exploration of this scenario, 
we conducted a nine-fold cross-validation using “Leave One 
Out” method. The training data from eight subjects in all five 
sessions were loaded together to train classifiers, and the 
remaining subject performed motions to test the system. The 
experiment was proposed to evaluate the generality of 
EMG-based neck and shoulder motion recognition.  

B. Experimental results and analysis 
1) User-specific Experiments: In the first session of 

user-specific experiments, a new classifier of system was 
created for each user. Every user had to test the system 
immediately after their training samples had been recorded 
and used for the training of the classifiers. The average 

classification accuracies of the 7 kinds of neck and shoulder 
motions for each subject are shown in Fig. 5 for each subject 
separately. The mean classification accuracy for all the 
subjects reached 97.8% (SD: 2.6%) average accuracy. These 
satisfying results demonstrate the feasibility of building 
user-specific MuCIs with neck and shoulder motions. 

In the results presented above, the classifiers were trained 
and tested on data from the same session with a 
fixed-placement of EMG sensors. In user-specific cross-time 
classification, the classifiers were trained on data from 
previous multiple sessions and testing samples were further 
performed by subject to evaluate the system performance. 
The average recognition accuracies of the classifiers trained 
with data mixed from the first 1, 2, 3, and 4 sessions, are 
shown in Fig. 6. 

Our experimental results of cross-time classification gave a 
brief insight into the relationship between the number of 
training sessions and classification accuracies. The 
recognition results show that the more training sessions for 
the system, the more accurate recognition performance it can 
be expected to achieve. When the classifiers were trained on 
data from only the first session, the average recognition rates 
are from 62.69% to 89.69% for nine subjects. And when 
training data samples were from four sessions, the 
recognition rates are all above 90% (Mean: 95.2%, SD: 2.9%). 
We believe that this phenomenon is mainly attributed to two 
factors. One is the SEMG differences caused by 
physiological changes between days for each subject, and the 
other is the sensor displacements between the different 
experimental sessions. Because the characteristics of SEMG 
signals are very sensitive to sensor placement, the sensor 
displacement is regarded as the dominant factor which affects 

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Mean
50

55

60

65

70

75

80

85

90

95

100

Subjects

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

Fig. 5.  User-specific classification accuracies 
of 7 kinds of neck and shoulder motions. 
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Fig. 6.  User-specific cross-time classification accuracies of 7 kinds of neck and shoulder motions. 
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Fig. 7.  User-independent classification accuracies of 7 kinds of neck 
and shoulder motions.
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the classification accuracy. In the second session, with 
training data only from the first session, the sensor 
displacements could result in low recognition accuracies. 
When the system was trained with data from multiple 
sessions, which could cover most of the possible sensor 
displacements, the classifiers became more robust and less 
sensitive to sensor displacements, and the classification 
accuracies were thus improved significantly. We concluded 
that a relatively effective choice of number of training 
sessions is four, because when the number reached four in our 
experiments, for most of the subjects, the recognition results 
improved significantly and were very close to those results 
with training and testing data from the same session. 

2) User-independent Experiments: To extend the 
user-specific classification results, we explored the feasibility 
to realize the cross-user system. Each of 9 subjects was 
required to do additional testing experiment with 
cross-validation in which the training datasets of remaining 
eight subjects from all five sessions were mixed together. Fig. 
7 shows user-independent classification results. The 
classification accuracies for nine subjects range from 73.56% 
(SD: 26.21%) for Sub1 to 93.07% (SD: 7.19%) for Sub2 with 
the mean rate 84.6% (SD: 8.1%). It is not unexpected that the 
recognition rates in user-independent classification are lower 
than that in user-specific classification. 

Due to the individual differences of biosignals, there exist 
great challenges to establish user-independent EMG-based 
recognition and interaction systems. Although previous 
researchers have realized various outstanding prototypes with 
MuCIs, few studies on user-independent classification have 
been reported and the limited testing results are not satisfying. 
T.S. Saponas et al. [3] explore the feasibility of MuCIs using 
forearm EMG to classify five kinds of finger “Lift” gestures 
at an average of 57% accuracy in user-independent 
experiments. J. Kim et al. [4] developed an EMG-based 
controlling interface to navigate an RC car with only four 
kinds of wrist gestures. A remarkable average rate of 93.17% 
could be achieved in user-independent classification, after the 
participants spend a long time practicing to perform the 
gestures with a sufficiently low variation. We did not do any 
optimization in subjects practice schemes or experimental 
design according to the gender, height, weight or degree of 
muscle strength in this study. We believe that the 
user-independent classification performance could be 
improved if the factors mentioned above are considered. 
Anyway, our present experimental results also demonstrated 
that it’s possible to build user-independent MuCIs. 

IV. CONCLUSION AND FUTURE WORK 
To investigate the feasibility of building muscle-computer 

interfaces with neck and shoulder motions, a real-time SEMG 
sensing, processing, and classification system was developed 
and two types of SEMG recognition experiments were 
designed and conducted on 7 different motions. The 
experimental results of user-specific, cross-time and 

user-independent classification demonstrate that neck and 
shoulder motions can be distinguished accurately based on 
SEMG signals from different views. So it is feasible to build 
MuCIs using neck and shoulder motions as input command 
for control of computers, mobile phones and other consumer 
electronics. Especially from cross-time experimental results, 
we concluded that the MuCIs can overcome the effects of 
sensor displacements when the classifier is trained with data 
collected in four collection sessions hold on different days. 
This conclusion means that user can interact directly with the 
interfaces after a few prior training sessions. 

However, as we expect MuCIs should be utilized by 
healthy people in actual applications, MuCIs with neck and 
shoulder motions are faced with challenges. For instance, 
since common end-users will not be expert to configure EMG 
sensor placement [3], the sensors should be embedded in 
special necklace or clothes for easy wear. Additionally, 
motionless neck and shoulder motions to be preferred as 
isometric contractions are unnoticeable and thus provide a 
method to control computer quietly and in subtle manner in 
special circumstances such as subway or conference. Our 
future work will focus on the realization of natural, 
convenient and wearable MuCIs using various body gestures. 
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