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Abstract— Ontological resources such as controlled 

vocabularies, taxonomies and ontologies from the OBO 

foundry are used to represent biomedical domain knowledge. 

The development of such resources is a time consuming task. 

Once they are finished they contribute to standardization of 

information representation, interoperability of IT solutions, 

literature analysis and knowledge discovery.  

Text mining comprises IT solutions for information 

retrieval (IR) and information extraction (IE). IR technology 

exploits ontological resources to select documents that fit best 

to the processed query, for example, through indexing of the 

literature content with concept ids or through disambiguat-

ion of terms in the query. IE solutions make use of the 

ontological labels to identify concepts in the text. The text 

passages that denote conceptual entries are then used either 

to annotate named entities or to relate the named entities to 

each other.  

For knowledge discovery (KD) solutions the identified 

concepts in the scientific literature are used to relate entities 

to each other, e.g. to identify gene-disease relations based on 

shared molecular functions. 

I. INTRODUCTION 

IFFERENT types of ontological resources are 

available in the biomedical domain. Controlled 

vocabularies are collections of terms, e.g., the Medical 

Subject Headings (MeSH terms) that are part of UMLS, 

and often include a taxonomic structure. More advanced 

ontological resources make use of further relation types, 

provide a meaningful definition of the concepts and 

ensure consistency parameters across the ontology (see 

OBO foundry). All resources provide concept ids as 

reference for every integrated term. 

The development of ontologies is a time-consuming 

task. The formal representation of domain knowledge is 

one important step and the acquisition and confirmation of 

terms representing relevant concepts is another one. It can 

be expected that work efficiency and development 

progress can be improved, if textual and semantic 
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resources such as the scientific literature can be exploited 

for the design and development work. 

Large document collections like the World Wide Web 

or the biomedical scientific literature (Medline) are 

readily available, however neither one is currently 

available in a semantically structured representation. The 

extraction of information from both sources requires text-

mining solutions. This information could be beneficial for 

the ontology development since literature resources 

provide a significant portion of the domain knowledge.  

Text mining contributes to the generation of ontological 

resources, but also text mining profits from the use of 

ontological resources. For example, the use of an ontology 

can support the disambiguation of terms that represent 

different concepts and furthermore, the use of synonyms 

linked to individual concepts can enlarge the coverage of 

the text mining solution. The most basic text mining tasks 

that integrate ontologies into text mining solutions are the 

mapping of concept labels to terms in textual sources (e.g. 

named entity recognition) and the expansion of query 

terms in information retrieval solutions, which is a 

specialty of text mining. As has been shown, the 

combination of ontologies with text mining solutions leads 

to benefits in different IT approaches and their combined 

exploitation is developing into a dedicated research topic.  

Examples of text mining tasks are text categorization, 

document retrieval and fact extraction from documents. In 

principle, the use of ontological knowledge can improve 

any of these tasks, since the integration of explicit 

semantics from the ontology supports one of the basic text 

mining tasks that is the mapping of concepts to terms in 

any type of document (e.g. named entity recognition). 

II. OVERVIEW ON TEXT MINING 

A. Information retrieval and information extraction 

In text mining systems, information retrieval (IR) and 

information extraction (IE) are usually interlinked (e.g. 

Figure 1). IR is used to retrieve relevant documents or 

parts of the document (e.g., paragraphs or sentences) to be 

possibly further processed by IE methods. The other way 

around, IE may feed identified results into an IR system to 

produce better results.  

Any IR system pre-processes the documents: all 

documents are tokenized and the tokens are normalized. 

After this step, the document is represented with the 
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selection of tokens (“words”) that have been identified in 

the text (called bag of words, BoW). The words are used 

to index the documents. Any query submitted to the 

retrieval engine is again decomposed into a BoW and is 

resolved against the index to generate a list of documents. 

The use of terminological and ontological resources 

improves the document retrieval, since ambiguities due to 

polysemy can be resolved before the indexing process. 

 
Figure 1: Information Retrieval and Information Extraction interaction 

Information extraction deals with the identification of 

facts (e.g. entities, events, relations) from textual sources 

(see above), e.g. variants of the gene BRCA1 being 

involved in causing breast cancer. Information extraction 

components deliver detailed information that can be 

reused in information retrieval solutions. Combined with 

ontological resources, IE solutions enable better 

identification of concepts in the documents. 

Even though the requirements for information 

extraction depend on the application, IE systems are 

usually composed of the same components [1] that can be 

combined in a pipeline of modules as shown in Figure 2. 

This pipeline approach modularizes the IE systems 

allowing the interchange of several components. As an 

engineering artifact, a common representation will 

guarantee the inter-operability of the components. Typical 

components in an IE system are: 

 

 
Figure 2: Information Extraction components 

Very important IE tasks are the identification of named 

entities (e.g., genes), terms representing concepts and 

novel terms from the scientific literature. 

B. Named entity recognition and normalization 

In the identification of named entities, we can 

distinguish the identification of an entity mention from the 

normalization of the named entity. In the first case, the IE 

system delivers the boundaries of the named entities (e.g., 

PGHS-2 vs. PGH Synthase 2). In the latter case, the 

named entity has to be mapped to a concept id (e.g., 

PGHS-2 vs. UniProtKb:O62698, called “normalisation”).  

The normalization of named entities from the text to 

concepts in the ontology, i.e. the mapping of the potential 

surface form of a concept label in the text to the concept 

identifier in the ontological resource, has to tackle the 

following two basic problems. The first one is that a given 

concept is represented using different surface forms in the 

text, for example different representations of a given term 

(morpho-syntactic variation; e.g., PGHS-2 vs. PHS II) or 

simply different terms for the same concept (synonymy; 

e.g., COX-2 vs. PGHS-2). Both cases require that 

different surface forms be linked to the same concept id. 

The other basic problem arises from the situation that the 

same term may denote more than one concept (polysemy). 

In this case, the context of the term is further analyzed to 

resolve any ambiguity of the term in the text to derive the 

appropriate concept. 

Resolving the ambiguity of polysemous terms requires 

special solutions. A large lexical resource, which proposes 

semantic types to given terms, can directly contribute to 

the resolution of ambiguous cases [2]. In other cases it is 

necessary to process the contextual information in the 

documents. Recently, special approaches take the 

topology of the ontology into consideration to 

disambiguate terms [3]. 

Contextual information of a term is commonly used to 

enable disambiguation reaching 98% on Medline abstracts 

[4]. Several disambiguation algorithms have been 

proposed that exploit the ontology topology and the 

context of the co-occurring terms to estimate the 

conceptual distance between the associated terms [5]. The 

contextual information is compared with a model of the 

concept based on its terminology and relations as 

expressed in the ontology.  

III. TEXT MINING FOR POPULATING THE ONTOLOGY 

Different techniques can be applied to normalize given 

surface forms to a concept label. In the case of yet 

unknown terms that have a high similarity to existing 

concept labels natural language processing techniques can 

be applied to include the missing entries [6]. It may 

happen that the terminological or ontological resources in 

the biomedical domain lack the required terminology for 

the mapping since not all terms for the concepts have been 

made available [7,8]. This gap in the resources is solved 

by adding the missing terms. This process is supported by 

term extraction tools, which process large amounts of text 

to identify statistically overrepresented terms that are 

assumed relevant for the domain [9]. In the case of the 

carotenoid pathway, 37 new and relevant concepts could 

be identified from 89,086 terms [10]. The other way 

around, mapping of existing terms (e.g., from the gene 

ontology) to text passages supports the identification of 

related terms [11, 12]. 

It has to be kept in mind that this task is constrained by 

the fact that content (e.g., facts) from the scientific 

literature is, in many cases, not factual but hypothetical 

and requires confirmation in the future [13]. For example, 

experimental results give first evidence on drug-gene or 

gene-diseases relations but require further confirmation 
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through future experiments. Even names such as “CREB-

binding Protein” convey that the true function and nature 

of the protein still has to be identified. 

A. Term and concept extraction 

Hierarchical clustering can be applied to generate 

groupings of terms based on the contextual information of 

the terms. The resulting structures can be verified by an 

ontology engineer or domain expert. [14] used 

hierarchical clustering to group gene-products (proteins) 

from the literature. The result was a collection of disjoint 

trees that were then merged by the knowledge expert. 

Term composition, like head-modifier, can give additional 

input that helps to add a taxonomical structure to the term 

repository. For instance, colon cancer is more specific 

than cancer, i.e. it is the sub-specification of the cancer to 

the organ type labeled the colon.  

The context of the terms can be used to identify similar 

and related terms. [15] collected additional tokens from 

the context of terms. These tokens were integrated into a 

vector space model that was thereafter reduced to its main 

components based on principal component analysis 

(PCA). This approach led to the identification of 

hierarchical relations at 58 % precision. A similar solution 

from [16] added the POS information to discriminate 

better the words defining the context. 

Other solutions to generate content for ontologies are 

based on language patterns. [17] and [18] have build 

dictionaries from extracted terms and have automatically 

assigned the terms to general categories. [19, 15] initiated 

his solution with an initial set of reliable extraction 

patterns that then have been combined with bootstrapping 

methods to identify additional extraction patterns. Their 

objective was the extraction of hyponym and hypernym 

relations without using a dictionary. 

B. Ontology Refinement 

Ontology refinement has the objective to transform an 

existing ontological resource to perform better in a task 

that requires a more specialized ontological resource [20]. 

Different techniques based on IE have been proposed, 

which typically identify statistically overrepresented terms 

with indication of domain relevance in contrast to 

frequently occurring common terms.  

Proposed methods exploit term co-occurrence to 

identify novel information supported by statistical means. 

[21] selected association rules that specify relations 

between concepts based on the analysis of a set of 

documents describing hotels. [22] have compared GO to 

different other ontologies to identify conflicting concepts 

(e.g. circular definitions) and new synonyms that are then 

presented to the ontologists. 

[23] extracted new terms from text and then placed 

them in the taxonomy or identifying taxonomic relations 

between existing concepts. In the biomedical domain, [24] 

propose an automated method to refine the Gene 

Ontology. The idea is to find rules based on GO terms 

variations for automatic expansion that is validated with 

the literature. 

IV. ONTOLOGIES AND INFORMATION RETRIEVAL 

Altogether, ontologies have been used in information 

retrieval to support query reformulation, semantic 

indexing and improved navigation of the search results. 

A. Query reformulation 

In Query Reformulation (QR) the query is transformed 

into a new representation (query expansion and 

refinement). QR refers to the different operations that are 

applied to the original user query in order to improve its 

performance. A user facing an information retrieval 

system has to consider how to transform his information 

need into a query representation in the system's query 

language in such a way that it is effective in terms of 

retrieval performance [25].  

1) Query Expansion 

Query expansion (QE) uses ontological resources as 

one source to gather expansion terms [26]. [27] tested 

manual query expansion and found that query expansion 

improves the performance in the case of short queries. 

However, she also measured that in principle queries that 

contain a larger number of terms can better specify the 

information need, but they usually lead to a decrease in 

the retrieval performance. This is mainly due to query 

drift, i.e. added terms contribute to the overall ambiguity 

induced by every single term and thus increase the 

likelihood for the inclusion of documents that do not 

properly fit to the query. In short, she noticed that each 

query term contributes its specific peculiarities linked to 

its inherent ambiguity and thus influences the performance 

of the IR problem.  

[28] also could not demonstrate that the addition of the 

expansion terms into the original query improves retrieval 

performance because the added terms introduce too much 

emphasis in the query and the retrieval. This lead to the 

final result that the Boolean “OR” operator has to be used 

in combination with the added terms to improve the 

performance because the added terms have to act as 

alternatives to the original query terms. Only this 

approach does not put significant bias on the user needs 

through the introduction of the expansion terms. 

For the biomedical domain, [29] and [30] explored on 

retrieval improvements for documents that refer to genes 

and proteins. They made use of UMLS and the content 

from the LocusLink database to achieve their goal. [31] 

have improved their query expansion through the 

integration of terms from UMLS and from the 

OSHUMED document collection into the queries. They 

have proposed to fit user queries to template specific 

queries in which the expansion terms are selected 

according to their relation to the original query terms. 
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Such relations between terms have been identified either 

in UMLS or in the document collection.  [11] could show 

using the TREC Genomics data that the mapping of the 

user queries to MeSH concepts improves IR. 

2) Query Refinement 

The retrieval of a large number of documents is 

preferred by users of an IR system. However, in the case 

of large document collections like Medline or the Web 

this leads to large and huge numbers of documents, in 

particular if the system is queried with polysemous terms. 

This induces the interest in increasing the precision of the 

IR system to avoid an information overload. One 

particular case is the resolution of acronyms to several 

long-forms, i.e. theirs different expansions. For instance, 

if there is an interest in documents from Medline with 

reference to APC, the IR system will produce documents 

that report on the disease (or gene) called adenomatous 

polyposis coli (APC) or on the biological structure 

anaphase-promoting complex (APC). In both cases, the 

user query does not specify clearly, which result is the 

expected one.  

In query refinement, the query is modified in order to 

filter out irrelevant documents and thus to increase the 

precision. Different techniques exist that make 

assumptions on the appropriate interpretation of the user 

query taking into consideration content of the documents 

in the underlying collection.  

In all these cases, QR solutions make suggestions for 

improvements to the query. One suggestion is to select a 

subpart of the terms in the query or to specify better the 

meaning of given terms in the query. Proposed techniques 

used in IR solutions include the one from Scatter/Gather 

[32] where the retrieved documents are clustered and an 

informative label is attached to each cluster. The user then 

selects a label and the associated cluster as his query 

refinement and receives the documents in the cluster as 

the retrieval result. [33, 34] have investigated into 

research on the classification of the user queries and on 

the expected clustering results according to the different 

categories. For the biomedical domain the IR solution 

called SOPHIA represents a similar solution [35]. Other 

systems that rely on the integration of ontological 

resources, e.g. OntoRefiner [36], post-process the 

retrieved documents to display them in an alignment along 

a given lattice. 

B. Semantic indexing 

Several examples of semantic indexing have been 

proposed, i.e. [37] for general document collections, [38] 

for technical documents and [39] for biomedical scientific 

literature. 

The semantic index that refers to concepts from an 

ontological resource in addition to lexical tokens (e.g. 

words and phrases) should enable disambiguation and 

normalization of terms to concepts. The ontological and 

textual sources are combined during the indexing process 

to improve the specificity of the tokens and to normalize 

terms to the same concept if the identified terms are 

synonymous. 

Information extraction components like named entity 

recognition (NER) are used to identify the concepts in the 

documents. The concept ids are then integrated into the 

semantic index. Now the query has to be transformed in a 

similar way, which means that query terms have to be 

mapped to a conceptual representation, i.e. the concept id. 

This last step can be problematic if the query context is 

not sufficient to find the appropriate id or if several 

alternatives have to be resolved (ambiguity).  

Finally yet importantly, semantic indexing enables 

querying the indexing engine with types only. In MedEvi 

for example, the query “[disease] and [protein]” is 

resolved to all combinations of any known gene and 

known disease that can be found in single sentences 

delivering gene-disease associations through the retrieval 

engine [40]. This approach avoids extensive query 

expansion techniques and query drift that would be a side 

effect. 

C. Organization of search results 

The large amount of documents returned by a retrieval 

system can be organized using a categorization scheme for 

the documents according to available taxonomic 

resources. The categorization scheme enables improved 

navigation of the search results based on the underlying 

taxonomic resources (e.g., ontologies), for example, the 

user can address directly and explore the documents 

attributed to the different subtopics and can match them to 

his information need. Two examples of an application that 

post-processes the retrieval results based on ontological 

and terminological resources are EBIMed and Facta [39, 

41]. These solutions analyze the complete set of retrieved 

documents and identify the associations between the 

concepts contained in the documents (co-occurrence). All 

associations are then delivered in a table and for every 

association it is possible to recover the documents that 

support the evidence. Facta delivers documents that 

contain collocations of genes and diseases, whereas 

EBIMed filters out sentences where proteins are annotated 

with GO concepts, drugs and species. 

In another solution, GoPubMed [42], retrieved 

documents are categorized into sets that all have been 

labeled with concepts that best represent the set. All labels 

come from existing taxonomic resources such as MeSH 

and the Gene Ontology (GO). This categorization enables 

the user to navigate to his preferred topics referring to a 

set of retrieved documents and to explore the used 

taxonomy overall to identify other subtopics of interest. 

V. ONTOLOGIES FOR INFORMATION EXTRACTION 

Information extraction (IE) is the engineering science 
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leading to solutions that gather facts from unstructured 

textual sources (e.g. documents). The information 

extraction need is expressed as a template that has to be 

filled with content from the document, i.e. the template 

slots have to be filled with pieces of text from the 

document by the IE system (cf. Figure 3). Several steps in 

the analysis have to be performed to produce a structured 

output expressed by the template. 

 
Figure 3 Information Extraction example 

IE solutions are difficult to compare and to assess 

through comparison since each one deals with a different 

extraction need that is reflected in the available data sets 

[43]. Furthermore, only a few of the solutions are publicly 

accessible to measure performances.  

In the biomedical domain, several data sets are now 

freely available for selected and standardized IE tasks: 

Biocreative I and II corpus, GENIA corpus, BioInfer 

dataset, AIMed corpus, Prodiser and the weakly annotated 

dataset for diseases [44, 45, 43, 46, 47, 48]. All these 

datasets cover only part of the information needs in the 

biomedical domain and furthermore, their focus is mainly 

limited to the identification of protein and gene names 

(PGN), the functional annotation of proteins and the 

interaction between proteins (protein-protein interaction, 

PPI). 

The extraction of relations between entities is usually 

based on a set of rules applied on annotated text (e.g. 

based on part-of-speech and named entities). This set of 

rules can be improved by applying inference using domain 

knowledge producing simpler rules with similar or higher 

efficiency and easier to maintain. 

The gene ontology (GO) has been most widely used to 

identify hidden knowledge in the scientific literature. For 

example, the annotation of proteins with GO terms from 

the scientific literature was efficient, if additional 

bioinformatics data resources contributed to the 

annotation of the proteins [49]. The annotation of genes 

with GO terms from the scientific literature and the same 

annotation for diseases lead to the generation of concept 

profiles based on GO terms. If these profiles were 

matched, then gene-disease associations could be 

identified (knowledge discovery) [50].  

More advanced information extraction solutions make 

use of the compositional structure of the event 

representation in the Gene Regulation Ontology [7]. The 

IE solution then identifies features in the text that can be 

fitted to the compositional structure of the events. For 

example, the representation of an event has to include the 

involvement of the agent (e.g., the transcription factor, 

TF), the patient (the TF binding site) and additional 

features such as the binding of both involved entities and 

the directionality of the event [51]. The inference of the 

event is based on the ontological representation of the 

GRO. The inference helps to identify facts that are 

underspecified concerning the event representation in the 

ontological resource. 

VI. CONCLUSION 

Text mining supports researcher working on a new 

ontological resource in several aspects. Terms can be 

identified in the scientific literature and thus help to 

increase the coverage of relevant terms in the ontology 

(concept extraction). In addition, other methods support 

the refinement of the ontology. 

The use of ontologies and thesauri is mandatory to 

achieve named entity normalization and semantic 

indexing. Both resources provide the concept ids and the 

IE task has to achieve the appropriate mapping to the 

semantic resource.  

The integration of ontologies in information retrieval 

enables better categorization of the results. Improvements 

to the query performance are difficult to prove. Ontologies 

used in the information extraction process are still work in 

progress. The structure of existing ontological resources is 

not yet optimized to the needs of IE solutions, i.e. the 

ontological resource has to be combined with a lexical 

resource to efficiently support IE solutions. 
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